We summarize our recent determination [1] of the spectral density of the Wilson operator in the p-regime of Wilson chiral perturbation theory. We discuss the range of validity of our formula and a possible extension to our computation in order to better understand the behaviour of the spectral density in a finite volume close to the threshold.
We compute the lattice spacing corrections to the spectral density of the Hermitean Wilson Dirac operator using Wilson Chiral Perturbation Theory at NLO. We consider a regime where the quark mass $m$ and the lattice spacing $a$ obey the relative power counting $msim a Lambda_{rm QCD}^2$: in this situation discretisation effects can be treated as perturbation of the continuum behaviour. While this framework fails to describe lattice spectral density close to the threshold, it allows nevertheless to investigate important properties of the spectrum of the Wilson Dirac operator. We discuss the range of validity of our results and the possible implications in understanding the phase diagram of Wilson fermions.
We present first results for Wilson coefficients of operators up to first order in the covariant derivatives for the case of Wilson fermions. They are derived from the off-shell Compton scattering amplitude $mathcal{W}_{mu u}(a,p,q)$ of massless quarks with momentum $p$. The Wilson coefficients are classified according to the transformation of the corresponding operators under the hypercubic group H(4). We give selected examples for a special choice of the momentum transfer $q$. All Wilson coefficients are given in closed analytic form and in an expansion in powers of $a$ up to first corrections.
We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation.
Starting from the chiral Lagrangian for Wilson fermions at nonzero lattice spacing we have obtained compact expressions for all spectral correlation functions of the Hermitian Wilson Dirac operator in the $epsilon$-domain of QCD with dynamical quarks. We have also obtained the distribution of the chiralities over the real eigenvalues of the Wilson Dirac operator for any number of flavors. All results have been derived for a fixed index of the Dirac operator. An important effect of dynamical quarks is that they completely suppress the inverse square root singularity in the spectral density of the Hermitian Wilson Dirac operator. The analytical results are given in terms of an integral over a diffusion kernel for which the square of the lattice spacing plays the role of time. This approach greatly simplifies the expressions which we here reduce to the evaluation of two-dimensional integrals.