Do you want to publish a course? Click here

Spectral density of the Dirac operator in two-flavour QCD

206   0   0.0 ( 0 )
 Added by Leonardo Giusti
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation.



rate research

Read More

We compute charmonium spectral functions in 2-flavour QCD using the maximum entropy method and anisotropic lattices. We find that the S-waves (J/psi and eta_c) survive up to temperatures close to 2T_c, while the P-waves (chi_c0 and chi_c1) melt away below 1.3T_c.
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ansatze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.
602 - B. Alles 2006
The behaviour of the topological susceptibility chi in QCD with two colours and 8 flavours of quarks is studied at nonzero temperature on the lattice across the finite density transition. It is shown that the signal of chi drops abruptly at a critical chemical potential mu_c, much as it happens at the finite temperature and zero density transition. The Polyakov loop and the chiral condensate undergo their transitions at the same critical value mu_c. At a value mu_s of the chemical potential, called saturation point, which in our case satisfies mu_s > mu_c, Pauli blocking supervenes and consequently the theory becomes quenched.
We study the influence of an external magnetic field on the deconfinement transition in two-flavour lattice QCD with physical quark charges. We use dynamical overlap fermions without any approximation such as fixed topology and perform simulations on a $16^3 times 6$ lattice and at a pion mass around $500MeV$. The pion mass (as well as the lattice spacing) was determined in independent runs on $12^3 times 24$ lattices. We consider two temperatures, one of which is close to the deconfinement transition and one which is above. Within our limited statistics the dependence of the Polyakov loop and chiral condensate on the magnetic field supports the inverse magnetic catalysis scenario in which the transition temperature decreases as the field strength grows for temperature not to far above the critical temperature.
SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behaviour, instead tentatively pointing towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range $0.9 lesssim gamma_* lesssim 0.95$. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا