Do you want to publish a course? Click here

Screening of charged impurities with multi-electron singlet-triplet spin qubits in quantum dots

107   0   0.0 ( 0 )
 Added by Jason Kestner
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charged impurities in semiconductor quantum dots comprise one of the main obstacles to achieving scalable fabrication and manipulation of singlet-triplet spin qubits. We theoretically show that using dots that contain several electrons each can help to overcome this problem through the screening of the rough and noisy impurity potential by the excess electrons. We demonstrate how the desired screening properties turn on as the number of electrons is increased, and we characterize the properties of a double quantum dot singlet-triplet qubit for small odd numbers of electrons per dot. We show that the sensitivity of the multi-electron qubit to charge noise may be an order of magnitude smaller than that of the two-electron qubit.



rate research

Read More

We estimate the triplet-singlet relaxation rate due to spin-orbit coupling assisted by phonon emission in weakly-confined quantum dots. Our results for two and four electrons show that the different triplet-singlet relaxation trends observed in recent experiments under magnetic fields can be understood within a unified theoretical description, as the result of the competition between spin-orbit coupling and phonon emission efficiency. Moreover, we show that both effects are greatly affected by the strength of the confinement and the external magnetic field, which may give access to very long-lived triplet states as well as to selective population of the triplet Zeeman sublevels.
We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.
We consider a quantum dot embedded in a three-dimensional nanowire with tunable aspect ratio a. A configuration interaction theory is developed to calculate the energy spectra of the finite 1D quantum dot systems charged with two electrons in the presence of magnetic fields B along the wire axis. Fruitful singlet-triplet transition behaviors are revealed and explained in terms of the competing exchange interaction, correlation interaction, and spin Zeeman energy. In the high aspect ratio regime, the singlet-triplet transitions are shown designable by tuning the parameters a and B. The transitions also manifest the highly correlated nature of long nanowire quantum dots.
Results of calculations and high source-drain transport measurements are presented which demonstrate voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the application of a judiciously-chosen gate voltage alters the ground-state of an electron pair from an entagled spin singlet to a spin triplet.
We present a scheme for correcting for crosstalk- and noise-induced errors in exchange-coupled singlet-triplet semiconductor double quantum dot qubits. While exchange coupling allows the coupling strength to be controlled independently of the intraqubit exchange couplings, there is also the problem of leakage, which must be addressed. We show that, if a large magnetic field difference is present between the two qubits, leakage is suppressed. We then develop pulse sequences that correct for crosstalk- and noise-induced errors and present parameters describing them for the 24 Clifford gates. We determine the infidelity for both the uncorrected and corrected gates as a function of the error-inducing terms and show that our corrected pulse sequences reduce the error by several orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا