Do you want to publish a course? Click here

A dynamical mass estimator for high z galaxies based on spectroastrometry

178   0   0.0 ( 0 )
 Added by Alessio Gnerucci
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy dynamical masses are important physical quantities to constrain galaxy evolutionary models, especially at high redshifts. However, at z~2 the limited signal to noise ratio and spatial resolution of the data usually do not allow spatially resolved kinematical modeling and very often only virial masses can be estimated from line widths. But even such estimates require a good knowledge of galaxy size, which may be smaller than the spatial resolution. Spectroastrometry is a technique which combines spatial and spectral resolution to probe spatial scales significantly smaller than the spatial resolution of the observations. Here we apply it to the case of high-z galaxies and present a method based on spectroastrometry to estimate dynamical masses of high z galaxies, which overcomes the problem of size determination with poor spatial resolution. We construct and calibrate a spectroastrometric virial mass estimator, modifying the classical virial mass formula. We apply our method to the [O III] or H{alpha} emission line detected in z~2-3 galaxies from AMAZE, LSD and SINS samples and we compare the spectroastrometric estimator with dynamical mass values resulting from full spatially resolved kinematical modeling. The spectroastrometric estimator is found to be a good approximation of dynamical masses, presenting a linear relation with a residual dispersion of only 0.15 dex. This is a big improvement compared to the classical virial mass estimator which has a non linear relation and much larger dispersion (0.47 dex) compared to dynamical masses. By applying our calibrated estimator to 16 galaxies from the AMAZE and LSD samples, we obtain masses in the ~10^7-10^10 Modot range extending the mass range attainable with dynamical modeling.



rate research

Read More

140 - V. Perret , B. Epinat , P. Amram 2012
MASSIV (Mass Assembly Survey with SINFONI in VVDS) is a sample of 84 distant star-forming galaxies observed with the SINFONI Integral Field Unit (IFU) on the VLT. These galaxies are selected inside a redshift range of 0.8 < z < 1.9, i.e. where they are between 3 and 5 billion years old. The sample aims to probe the dynamical and chemical abundances properties of representative galaxies of this cosmological era. On the one hand, close environment study shows that about a third of the sample is involved in major mergers. On the other hand, kinematical analysis revealed that 42% of the sample is rotating disks, in accordance with higher redshift samples. The remaining 58% show complex kinematics, suggesting a dynamical support based on dispersion, and about half of these galaxies is involved in major mergers. Spheroids, unrelaxed merger remnants, or extremely turbulent disks might be an explanation for such a behavior. Furthermore, the spatially resolved metallicity analysis reveals positive gradients, adding a piece to the puzzle of galaxies evolution scenarios.
Understanding the different mechanisms of galaxy assembly at various cosmic epochs is a key issue for galaxy evolution and formation models. We present MASSIV (Mass Assembly Survey with SINFONI in VVDS) in this context, an on-going survey with VLT/SINFONI aiming to probe the kinematics and chemical abundances of a unique sample of 84 star-forming galaxies selected in the redshift range z ~ 1-2. This large sample, spanning a wide range of stellar masses, is unique at these high redshifts and statistically representative of the overall galaxy population. In this paper, we give an overview of the MASSIV survey and then focus on the spatially-resolved chemical properties of high-z galaxies and their implication on the process of galaxy assembly.
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ~ 8. Its two-tiered wide and deep strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ~ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 square arcmin to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J<26.2 mag, and are > 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright-end of the rest-frame ultraviolet luminosity function of galaxies at z ~ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ~ 8. Their derived stellar masses are on the order of a few x 10^9 M_sun, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ~ 8. The high number density of very luminous and very massive galaxies at z ~ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.
203 - Kenneth C. Wong 2012
We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high-redshift (z ~ 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies, and thus are generally better fields for detecting very high-redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10^15 M_sun to 3x10^15 M_sun. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high mass, multiple-halo lines of sight exist in the SDSS.
The evolution of masses and sizes of passive (early-type) galaxies with redshift provides ideal constraints to galaxy formation models. These parameters can in principle be obtained for large galaxy samples from multi-band photometry alone. However the accuracy of photometric masses is limited by the non-universality of the IMF. Galaxy sizes can be biased at high redshift due to the inferior quality of the imaging data. Both problems can be avoided using galaxy dynamics, and in particular by measuring the galaxies stellar velocity dispersion. Here we provide an overview of the efforts in this direction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا