Do you want to publish a course? Click here

Magnetic jet model for GRBs and the delayed arrival of >100 MeV photons

88   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photons of energy larger than 100 MeV from long-GRBs arrive a few seconds after <10 MeV photons do. We show that this delay is a natural consequence of a magnetic dominated relativistic jet. The much slower acceleration of a magnetic jet with radius (compared with a hot baryonic outflow) results in high energy gamma-ray photons to be converted to electron-positron pairs out to a larger radius whereas lower energy gamma-rays of energy less than ~10 MeV can escape when the jet crosses the Thomson-photosphere. The resulting delay for the arrival of high energy photons is found to be similar to the value observed by the Fermi satellite for a number of GRBs. A prediction of this model is that the delay should increase with photon energy (E) as E^{0.17} for E>100 MeV. The delay depends almost linearly on burst redshift, and on the distance from the central compact object where the jet is launched (R_0). Therefore, the delay in arrival of >10^2 MeV photons can be used to estimate burst redshift if the magnetic jet model for gamma-ray generation is correct and R_0 is roughly the same for long-GRBs.



rate research

Read More

86 - Maxim Lyutikov 2013
We discuss three topics: (i) the dynamics of afterglow jet breaks; (ii) the origin of Fermi-LAT photons; (iii) the electromagnetic model of short GRBs
147 - P.A. Curran 2009
The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in half of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.
We present the first Fermi Large Area Telescope (LAT) low energy catalog (1FLE) of sources detected in the energy range 30 - 100 MeV. The COMPTEL telescope detected sources below 30 MeV, while catalogs released by the Fermi-LAT and EGRET collaborations use energies above 100 MeV. We create a list of sources detected in the energy range between 30 and 100 MeV, which closes a gap of point source analysis between the COMPTEL catalog and the Fermi-LAT catalogs. One of the main challenges in the analysis of point sources is the construction of the background diffuse emission model. In our analysis, we use a background-independent method to search for point-like sources based on a wavelet transform implemented in the PGWave code. The 1FLE contains 198 sources detected above 3 $sigma$ significance with eight years and nine months of the Fermi-LAT data. For 187 sources in the 1FLE catalog we have found an association in the Fermi-LAT 3FGL catalog: 148 are extragalactic, 22 are Galactic, and 17 are unclassified in the 3FGL. The ratio of the number of flat spectrum radio quasars (FSRQ) to BL Lacertae (BL Lacs) in 1FLE is 3 to 1, which can be compared with an approximately 1 to 1 ratio for the 3FGL or a 1 to 6 ratio for 3FHL. The higher ratio of the FSRQs in the 1FLE is expected due to generally softer spectra of FSRQs relative to BL Lacs. Most BL Lacs in 1FLE are of low-synchrotron peaked blazar type (18 out of 31), which have softer spectra and higher redshifts than BL Lacs on average. Correspondingly, we find that the average redshift of the BL Lacs in 1FLE is higher than in 3FGL or 3FHL. There are 11 sources that do not have associations in the 3FGL. Most of the unassociated sources either come from regions of bright diffuse emission or have several known 3FGL sources in the vicinity, which can lead to source confusion. The remaining unassociated sources have significance less than 4 $sigma$.
Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above $sim1$ GeV. However, due to the lacking sensitivity of current experiments at MeV-GeV energies, sometimes dubbed the MeV gap, dark matter models with MeV to sub-GeV particle masses have received little attention so far. Various proposed MeV missions (like, e.g., e-ASTROGAM or AMEGO) are aimed at closing this gap in the mid- or long-term future. This, and the absence of clear dark matter signals in the GeV-TeV range, makes it relevant to carefully reconsider the expected experimental instrumental sensitivities in this mass range. The most common two-body annihilation channels for sub-GeV dark matter are to neutrinos, electrons, pions or directly to photons. Among these, only the electron channel has been extensively studied, and almost exclusively in the context of the 511 keV line. In this work, we study the prospects for detecting MeV dark matter annihilation in general in future MeV missions, using e-ASTROGAM as reference, and focusing on dark matter masses in the range 1 MeV-3 GeV. In the case of leptonic annihilation, we emphasise the importance of the often overlooked bremsstrahlung and in-flight annihilation spectral features, which in many cases provide the dominant gamma-ray signal in this regime.
325 - G. Ghisellini 2012
We recently found that Gamma Ray Burst energies and luminosities, in their comoving frame, are remarkably similar. This, coupled with the clustering of energetics once corrected for the collimation factor, suggests the possibility that all bursts, in their comoving frame, have the same peak energy Epeak (of the order of a few keV) and the same energetics of the prompt emission Egamma (of the order of 2e48 erg). The large diversity of bursts energies is then due to the different bulk Lorentz factor Gamma and jet aperture angle theta_jet. We investigated, through a population synthesis code, what are the distributions of Gamma and theta_jet compatible with the observations. Both quantities must have preferred values, with log-normal best fitting distributions and <Gamma0> ~ 275 and <theta_jet> ~ 8.7 degree. Moreover, the peak values of the Gamma and theta_jet distributions must be related - theta_jet^2.5 Gamma =const: the narrower the jet angle, the larger the bulk Lorentz factor. We predict that ~6% of the bursts that point to us should not show any jet break in their afterglow light curve since they have sin(theta_jet)<1/Gamma. Finally, we estimate that the local rate of GRBs is ~0.3% of all local SNIb/c and ~2.5% of local hypernovae, i.e. SNIb/c with broad absorption lines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا