Do you want to publish a course? Click here

A Typology for Quantum Hall Liquids

131   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a close analogy between the response of a quantum Hall liquid (QHL) to a small change in the electron density and the response of a superconductor to an externally applied magnetic flux - an analogy which is made concrete in the Chern-Simons Landau-Ginzburg (CSLG) formulation of the problem. As the Types of superconductor are distinguished by this response, so too for QHLs: a typology can be introduced which is, however, richer than that in superconductors owing to the lack of any time-reversal symmetry relating positive and negative fluxes. At the boundary between Type I and Type II behavior, the CSLG action has a Bogomolnyi point, where the quasi-holes (vortices) are non-interacting - at the microscopic level, this corresponds to the behavior of systems governed by a set of model Hamiltonians which have been constructed to render exact a large class of QHL wavefunctions. All Types of QHLs are capable of giving rise to quantized Hall plateaux.



rate research

Read More

Magneto-transport measurements are performed on two-dimensional GaAs electron systems to probe the quantum Hall (QH) effect at low magnetic fields. Oscillations following the Shubnikov-de Haas (SdH) formula are observed in the transition from the insulator to QH liquid when the observed almost temperature-independent Hall slope indicates insignificant interaction correction. Our study shows that the existence of SdH oscillations in such a transition can be understood based on the non-interacting model.
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible. We compare this relaxation mechanism with other relaxation channels existing in a quantum Hall ferromagnet.
326 - Ady Stern 2007
The dichotomy between fermions and bosons is at the root of many physical phenomena, from metallic conduction of electricity to super-fluidity, and from the periodic table to coherent propagation of light. The dichotomy originates from the symmetry of the quantum mechanical wave function to the interchange of two identical particles. In systems that are confined to two spatial dimensions particles that are neither fermions nor bosons, coined anyons, may exist. The fractional quantum Hall effect offers an experimental system where this possibility is realized. In this paper we present the concept of anyons, we explain why the observation of the fractional quantum Hall effect almost forces the notion of anyons upon us, and we review several possible ways for a direct observation of the physics of anyons. Furthermore, we devote a large part of the paper to non-abelian anyons, motivating their existence from the point of view of trial wave functions, giving a simple exposition of their relation to conformal field theories, and reviewing several proposals for their direct observation.
An antiphased magnetoplasma (MP) mode in a two-dimensional electron gas (2DEG) has been studied by means of inelastic light scattering (ILS) spectroscopy. Unlike the cophased MP mode it is purely quantum excitation which has no classic plasma analogue. It is found that zero momentum degeneracy for the antiphased and cophased modes predicted by the first-order perturbation approach in terms of the {it e-e} interaction is lifted. The zero momentum energy gap is determined by a negative correlation shift of the antiphased mode. This shift, observed experimentally and calculated theoretically within the second-order perturbation approach, is proportional to the effective Rydberg constant in a semiconductor material.
A quantum Hall (QH) interface is different from an ordinary QH edge, as the latter has its location determined by the confining potential, while the former can be unpinned and behave like a free string. In this paper, we demonstrate this difference by studying three different interfaces formed by (i) the Laughlin state and the vacuum, (ii) the Pfaffian state and the vacuum, and (iii) the Pfaffian and the anti-Pfaffian states. We find that string-like interfaces propagating freely in the QH system lead to very different dynamical properties from edges. This qualitative difference gives rise to fascinating new physics and suggests a new direction in future research on QH physics. We also discuss briefly possible analogies between QH interfaces and concepts in string theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا