Do you want to publish a course? Click here

Observation of noise phase locking in a single-frequency VECSEL

130   0   0.0 ( 0 )
 Added by Fabien Bretenaker
 Publication date 2011
  fields Physics
and research's language is English
 Authors A. El Amili




Ask ChatGPT about the research

We present an experimental observation of phase locking effects in the intensity noise spectrum of a semiconductor laser. These noise correlations are created in the medium by coherent carrier-population oscillations induced by the beatnote between the lasing and non-lasing modes of the laser. This phase locking leads to a modification of the intensity noise profile at around the cavity free-spectral-range value. The noise correlations are evidenced by varying the relative phase shift between the laser mode and the non-lasing adjacent side modes.



rate research

Read More

291 - Syamsundar De n 2015
The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency (RF) beatnote generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have a precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of our interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multi-mode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported, which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.
595 - T. Yang 2013
Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi-frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2,$GHz is obtained for (positive) detuning values between zero and $1.5,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.
An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100 % in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.
81 - C. Guo , M. Favier , N. Galland 2020
We demonstrate a method for accurately locking the frequency of a continuous-wave laser to an optical frequency comb in conditions where the signal-to-noise ratio is low, too low to accommodate other methods. Our method is typically orders of magnitude more accurate than conventional wavemeters and can considerably extend the usable wavelength range of a given optical frequency comb. We illustrate our method by applying it to the frequency control of a dipole lattice trap for an optical lattice clock, a representative case where our method provides significantly better accuracy than other methods.
Ultra-low frequency noise lasers have been widely used in laser-based experiments. Most narrow-linewidth lasers are implemented by actively suppressing their frequency noise through a frequency noise servo loop (FNSL). The loop bandwidths (LBW) of FNSLs are currently below megahertz, which is gradually tricky to meet application requirements, especially for wideband quantum sensing experiments. This article has experimentally implemented an FNSL with loop-delay-limited 3.5 MHz LBW, which is an order higher than the usual FNSLs. Using this FNSL, we achieved 70 dB laser frequency noise suppression over 100 kHz Fourier frequency range. This technology has broad applications in vast fields where wideband laser frequency noise suppression is inevitable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا