Do you want to publish a course? Click here

Singular and non-singular endstates in massless scalar field collapse

115   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the collapse of a massless scalar field coupled to gravity. A class of blackhole solutions are identified. We also report on a class of solutions where collapse starts from a regular spacelike surface but then the collapsing scalar field freezes. As a result, in these solutions, a black hole does not form, neither is there any singularity in the future.



rate research

Read More

The phenomena of collapse and dispersal for a massless scalar field has drawn considerable interest in recent years, mainly from a numerical perspective. We give here a sufficient condition for the dispersal to take place for a scalar field that initially begins with a collapse. It is shown that the change of the gradient of the scalar field from a timelike to a spacelike vector must be necessarily accompanied by the dispersal of the scalar field. This result holds independently of any symmetries of the spacetime. We demonstrate the result explicitly by means of an example, which is the scalar field solution given by Roberts. The implications of the result are discussed.
In this paper, we study a class of higher derivative, non-local gravity which admits homogeneous and isotropic non-singular, bouncing universes in the absence of matter. At the linearized level, the theory propagates only a scalar degree of freedom, and no vector or tensor modes. The scalar can be made free from perturbative ghost instabilities, and has oscillatory and bounded evolution across the bounce.
Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. We construct the initial data for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. It is shown that the expansion law in a late time approaches to that of the radiation dominated universe and the matter dominated universe for the small and large initial amplitude cases, respectively. For the large initial amplitude case, the horizon is initially a past outer trapping horizon, whose area decreases with time, and after a certain period of time, it turns to a future outer trapping horizon with the increasing area.
In this paper we will provide a non-singular rotating space time metric for a ghost free infinite derivative theory of gravity. We will provide the predictions for the Lense-Thirring effect for a slowly rotating system, and how it is compared with that from general relativity.
We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا