No Arabic abstract
In this paper, we study a class of higher derivative, non-local gravity which admits homogeneous and isotropic non-singular, bouncing universes in the absence of matter. At the linearized level, the theory propagates only a scalar degree of freedom, and no vector or tensor modes. The scalar can be made free from perturbative ghost instabilities, and has oscillatory and bounded evolution across the bounce.
We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
The observed temperature fluctuations in the cosmic microwave background can be traced back to primordial curvature modes that are sourced by adiabatic and/or entropic matter perturbations. In this paper, we explore the entropic mechanism in the context of non-singular bouncing cosmologies. We show that curvature modes are naturally generated during `graceful exit, i.e., when the smoothing slow contraction phase ends and the universe enters the bounce stage. Here, the key role is played by the kinetic energy components that come to dominate the energy density and drive the evolution towards the cosmological bounce.
We investigate the tensor and the scalar perturbations in the symmetric bouncing universe driven by one ordinary field and its Lee-Wick partner field which is a ghost. We obtain the even- and the odd-mode functions of the tensor perturbation in the matter-dominated regime. The tensor perturbation grows in time during the contracting phase of the Universe, and decays during the expanding phase. The power spectrum for the tensor perturbation is evaluated and the spectral index is given by $n_{rm T} =6$. We add the analysis on the scalar perturbation by inspecting the even- and the odd-mode functions in the matter-dominated regime, which was studied numerically in our previous work. We conclude that the comoving curvature by the scalar perturbation is constant in the super-horizon scale and starts to decay in the far sub-horizon scale while the Universe expands.
We compute the level of non-gaussianities produced by a cosmological bouncing phase in the minimal non-singular setup that lies within the context of General Relativity when the matter content consists of a simple scalar field with a standard kinetic term. Such a bouncing phase is obtained by requiring that the spatial sections of the background spacetime be positively curved. We restrict attention to the close vicinity of the bounce by Taylor expanding the scale factor, the scalar field and its potential in powers of the conformal time around the bounce. We find that possibly large non-gaussianities are generically produced at the bounce itself and also discuss which shapes of non-gaussianities are mostly likely to be produced.
We study Kaluza-Klein cosmology in cuscuton gravity and find an exact solution describing an accelerating 4-dimensional universe with a stable extra dimension. A cuscuton which is a non-dynamical scalar field is responsible for the accelerating expansion and a vector field makes the extra dimensional space stable. Remarkably, the accelerating universe in our model is not exactly de Sitter.