We calculate the production of a W boson in association with up to two jets including at least one b-jet to next-to-leading order (NLO) in QCD at the CERN Large Hadron Collider with 7 TeV center-of-mass energy. Both exclusive and inclusive event cross section and b-jet cross sections are presented. The calculation is performed consistently in the five-flavor-number scheme where both q anti-q and bq (q == b) initiated parton level processes are included at NLO QCD. We study the residual theoretical uncertainties of the NLO predictions due to the renormalization and factorization scale dependence, to the uncertainty from the parton distribution functions, and to the values of alpha_s and the bottom-quark mass.
This paper summarises results on W and Z plus jet production in pp collisions at $sqrt{s} = 7$ TeV at the CERN Large Hadron Collider, from both the ATLAS and CMS experiments. Based on the 2010 and 2011 datasets, measurements have been made of numerous cross sections providing excellent tests of the latest predictions from QCD calculations and event generators.
We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross section for jets containing a single b quark and jets containing a b-anti b pair. There are a wide variety of processes that contribute, and it is necessary to include them all in order to have a complete description at both colliders.
We discuss briefly a recent study of new observables in LHC inclusive events with three tagged jets. One jet is in the forward direction, the second is in the backward direction and well-separated in rapidity from the first, whereas, the third tagged jet is to be found in more central regions of the detector. Taking into consideration that non-tagged mini-jet emissions are allowed and that they may be accounted for by the BFKL gluon Green function, we project the cross sections on azimuthal-angle components and define suitable ratios based on these projections which can provide several distinct tests of the BFKL dynamics.
We calculate the Next-to-Leading Order (NLO) QCD corrections to W-b-bbar production including full bottom-quark mass effects. We study the impact of NLO QCD corrections on the total cross section and invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron p-pbar collider. We perform a detailed comparison with a calculation that considers massless bottom quarks. We find that neglecting bottom-quark mass effects overestimates the NLO total cross-section for W-b-bbar production at the Tevatron by about 8% independent of the choice of renormalization and factorization scale.
We present precise predictions for the production of a Higgs boson in association with a hadronic jet and a $mathrm{W}$ boson at hadron colliders. The behaviour of QCD corrections are studied for fiducial cross sections and distributions of the charged gauge boson and jet-related observables. The inclusive process (at least one resolved jet) and the exclusive process (exactly one resolved jet) are contrasted and discussed. The inclusion of QCD corrections up to $mathcal{O}(alpha_{text{s}}^3)$ leads to a clear stabilisation of the predictions and contributes substantially to a reduction of remaining theoretical uncertainties.
F. Caola
,J.M. Campbell
,F. Febres Cordero
.
(2011)
.
"NLO QCD predictions for W+1 jet and W+2 jet production with at least one b jet at the 7 TeV LHC"
.
Doreen Wackeroth
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا