Do you want to publish a course? Click here

Nature of the electronic states involved in the chemical bonding and superconductivity at high pressure in SnO

105   0   0.0 ( 0 )
 Added by Alexey Lukoyanov
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the electronic structure and the Fermi surface of SnO using density functional theory (DFT) calculations within recently proposed exchange-correlation potential (PBE+mBJ) at ambient conditions and high pressures up to 19.3 GPa where superconductivity was observed. It was found that the Sn valence states 5s, 5p, and 5d are strongly hybridized with the O 2p-states, and that our DFT-calculations are in good agreement with O K-edge X-ray spectroscopy measurements for both occupied and empty states. It was demonstrated that the metallic states appearing under pressure in the semiconducting gap stem due to the transformation of the weakly hybridized O 2p-Sn 5sp subband corresponding to the lowest valence state of Sn in SnO. We discuss the nature of the electronic states involved in chemical bonding and formation of the hole and electron pockets with nesting as a possible way to superconductivity.



rate research

Read More

154 - E.Nishibori , M.Takata , M.Sakata 2001
The accurate charge density of MgB2 was observed at room temperature(R.T.) and 15K by the MEM(Maximum Entropy Method)/Rietveld analysis using synchrotron radiation powder data. The obtained charge density clearly revealed the covalent bonding feature of boron forming the 2D honeycomb network in the basal plane, on the other hand, Mg is found to be in divalent state. A subtle but clear charge concentration was found on boron 2D sheets at 15K, which should be relating to superconductivity.
This article reports the study of SnO by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). We have calculated the structural, elastic, electronic and optical of SnO under high pressure. The elastic properties such as the elastic constants Cij bulk modulus, shear modulus, Young modulus, anisotropic factor, Pugh ratio, Poisson ratio are calculated and analyzed. Mechanical stability of SnO at all pressure are confirmed by using Born stability criteria in terms of elastic constants and are associated with ductile behaviour based on G/B ratios. It is also found that SnO exhibits very high anisotropy. The energy band structure and density of states are also calculated and analyzed. The results show the semiconducting and metallic properties at 0 (zero) and high pressure, respectively. Furthermore, the optical properties such as dielectric function, refractive index, photoconductivity, absorption coefficients, loss function and reflectivity are also calculated. All the results are compared with those of the SnO where available but most of the results at high pressure are not compared due to unavailability of the results.
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressure phase ice XIIIM (Refs. 1-2) (380GPa), ice XV (a new structure we derived from ice XIIIM) (300-380GPa), as well as the ambient pressure low-temperature phase ice XI. Different from many other materials, the band gap of ice X is found to be increasing linearly with pressure from 55GPa up to 290GPa, the electronic density of states (DOS) shows that the valence bands have a tendency of red shift (move to lower energies) referring to the Fermi energy while the conduction bands have a blue shift (move to higher energies). This behavior is interpreted as the high pressure induced change of s-p charge transfers between hydrogen and oxygen. It is found that ice X exists in the pressure range from 75GPa to about 290GPa. Beyond 300GPa, a new hydrogen-bonding structure with 50% hydrogen atoms in symmetric positions in O-H-O bonds and the other half being asymmetric, ice XV, is identified. The physical mechanism for this broken symmetry in hydrogen bonding is revealed.
114 - Wei Xu , J. G. Che 2018
We reveal that the origin of ferromagnetism caused by $sp$ electrons in graphene with vacancies can be traced to electrons partially filling $sp^{2*}$-antibonding and $p_z^*$-nonbonding states, which are induced by the vacancies and appear near the Fermi level. Because the spatial wavefunctions of the both states are composed of atomic orbitals in an antisymmetric configuration, their spin wavefunctions should be symmetric according to the electron exchange antisymmetric principle, leading to electrons partially filling these states in spin polarization. Since this $p_z^*$ state originates not from interactions between the atoms but from the unpaired $p_z$ orbitals due to the removal of $p_z$ orbitals on the minority sublattice, the $p_z^*$ state is constrained, distributed on the atoms of the majority sublattice, and decays gradually from the vacancy as $sim$ $1/r$. According to these characteristics, we concluded that the $p_z^*$ state plays a critical role in magnetic ordering in graphene with vacancies. If the vacancy concentration in graphene is large enough to cause the decay-length regions to overlap, constraining the $p_z^*$ orbital components as little as possible on the minority sublattice atoms in the overlap regions results in the vacancy-induced $p_z^*$ states being coherent. The coherent process in the overlap region leads to the wavefunctions in all the involved regions antisymmetrized, consequently causing ferromagnetism according to the electron exchange antisymmetric principle. This unusual mechanism concerned with the origin of $sp$-electron magnetism and magnetic ordering has never before been reported and is distinctly different from conventional mechanisms.
The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole matrix elements. The detailed investigation of the electronic structure and chemical bonding provides increased understanding of the physical properties of this type of nanolaminates. Three different types of bond regions are identified; the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper in energy are observed around 2.5 eV and 10 eV below the Fermi level, respectively. A strongly modified spectral shape of the 3s final states in comparison to pure Al is detected for the buried Al monolayers indirectly reflecting the Ti 3d - Al 3p hybridization. The differences between the electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in relation to the number of Al layers per Ti layer in the two former systems and the corresponding change of the unusual materials properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا