Do you want to publish a course? Click here

Charge control in InP/GaInP single quantum dots embedded in Schottky diodes

103   0   0.0 ( 0 )
 Added by Odilon Couto Jr.
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate control by applied electric field of the charge states in single self-assembled InP quantum dots placed in GaInP Schottky structures grown by metalorganic vapor phase epitaxy. This has been enabled by growth optimization leading to suppression of formation of large dots uncontrollably accumulating charge. Using bias- and polarization-dependent micro-photoluminescence, we identify the exciton multi-particle states and carry out a systematic study of the neutral exciton state dipole moment and polarizability. This analysis allows for the characterization of the exciton wavefunction properties at the single dot level for this type of quantum dots. Photocurrent measurements allow further characterization of exciton properties by electrical means, opening new possibilities for resonant excitation studies for such system.



rate research

Read More

Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy.
We have investigated the optical properties of a single InAsP quantum dot embedded in a standing InP nanowire. A regular array of nanowires was fabricated by epitaxial growth and electron-beam patterning. The elongation of transverse exciton spin relaxation time of the exciton state with decreasing excitation power was observed by first-order photon correlation measurements. This behavior is well explained by the motional narrowing mechanism induced by Gaussian fluctuations of environmental charges in the InP nanowire. The longitudinal exciton spin relaxation time was evaluated by the degree of the random polarization of emission originating from exciton state confined in a single nanowire quantum dots by using Mueller Calculus based on Stokes parameters representation.
133 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 1100 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
Colloidal quantum dots (QDs) of group III-V are considered as promising candidates for next-generation environmentally friendly light emitting devices, yet there appears to be only limited understanding of the underlying electronic and excitonic properties. Using large-scale density functional theory with the hybrid B3LYP functional solving the single-particle states and time-dependent density functional theory accounting for the many-body excitonic effects, we have identified the structural, electronic and excitonic optical properties of InP, GaP and GaInP QDs containing up to a thousand atoms or more. The calculated optical gap of InP QD appears in excellent agreement with available experiments, and it scales nearly linearly with the inverse diameter. The radiative exciton decay lifetime is found to increase surprisingly linearly with increasing the dot size. For GaP QDs, we predict an unusual electronic state crossover at diameter around 1.5 nm whereby the nature of the lowest unoccupied molecular orbital (LUMO) state switches its symmetry from $Gamma_{5}$-like at larger diameter to $Gamma_{1}$-like at smaller diameter. After the crossover, the absorption intensity of the band-edge exciton states is significantly enhanced. Finally, we find that Vegards law holds very well for GaInP random alloyed quantum dots down to ultra-small sizes with less than a hundred atoms. The obtained energy gap bowing parameter of this common-cation compound in QD regime appears positive, size-dependent and much smaller than its bulk parentage. The volume deformation, dominating over the charge exchange and structure relaxation effects, is mainly responsible for the QD energy gap bowing. The present work provides a road map for a variety of electronic and optical properties of colloidal QDs in group III-V that can guide spectroscopic studies.
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots, leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا