No Arabic abstract
This paper presents a study of the polymer-filler interfacial effects on filler dispersion and mechanical reinforcement in Polystyrene (PS) / silica nanocomposites by direct comparison of two model systems: un-grafted and PS-grafted silica dispersed in PS matrix. The structure of nanoparticles has been investigated by combining Small Angle Neutron Scattering (SANS) measurements and Transmission Electronic Microscopic (TEM) images. The mechanical properties were studied over a wide range of deformation by plate/plate rheology and uni-axial stretching. At low silica volume fraction, the particles arrange, for both systems, in small finite size non-connected aggregates and the materials exhibit a solid-like behavior independent of the local polymer/fillers interactions suggesting that reinforcement is dominated by additional long range effects. At high silica volume fraction, a continuous connected network is created leading to a fast increase of reinforcement whose amplitude is then directly dependent on the strength of the local particle/particle interactions and lower with grafting likely due to deformation of grafted polymer.
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation time slowly for weak attraction while exponential dependence is observed for strong attraction. For fixed driving force and chain length the histogram of translocation time has a transition from Gaussian distribution to long-tailed distribution with increasing attraction. Under a weak driving force and a strong attractive force, both the translocation time and the residence time in the pore show a non-monotonic behavior as a function of the chain length. Our simulations results are in good agreement with recent experimental data.
Using X- ray photon correlation spectroscopy measurements on gold nanoparticles embedded in polymethylmethacrylate we provide evidence for existence of an intrinsic length scale for dynamic heterogeneity in polymer nanocomposites similar to that in other soft materials.We also show how the dynamics varies in a complex way with various parameters.
We present a numerical study of the slip link model introduced by Likhtman for describing the dy- namics of dense polymer melts. After reviewing the technical aspects associated with the implemen- tation of the model, we extend previous work in several directions. The dependence of the relaxation modulus with the slip link density and the slip link stiffness is reported. Then the nonlinear rheolog- ical properties of the model, for a particular set of parameters, are explored. Finally, we introduce excluded volume interactions in a mean field such as manner in order to describe inhomogeneous systems, and we apply this description to a simple nanocomposite model. With this extension, the slip link model appears as a simple and generic model of a polymer melt, that can be used as an alternative to molecular dynamics for coarse grained simulations of complex polymeric systems.
Enthalpic interactions at the interface between nanoparticles and matrix polymers is known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically identical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites is not very clear. Here, we demonstrate the influence of the interfacial layer dynamics on the fragility and dynamical heterogeneity (DH) of athermal and glassy PNCs. The IL properties are altered by changing the grafted to matrix polymer size ratio, f, which in turn changes the extent of matrix chain penetration into the grafted layer. The fragility of PNCs is found to increase monotonically with increasing entropic compatibility, characterized by increasing penetration depth. Contrary to observations in most polymers and glass formers, we observe an anti-correlation between the dependence on IL dynamics of fragility and DH, quantified by the experimentally estimated Kohlrausch-Watts-Williams parameter and the non-Gaussian parameter obtained from simulations.
We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.