No Arabic abstract
GRAVITAS is an X-ray observatory, designed and optimised to address the ESA Cosmic Vision theme of Matter under extreme conditions. It was submitted as a response to the call for M3 mission proposals. The concept centres around an X-ray telescope of unprecedented effective area, which will focus radiation emitted from close to the event horizon of black holes or the surface of neutron stars. To reveal the nature and behaviour of matter in the most extreme astrophysical environments, GRAVITAS targets a key feature in the X-ray spectra of compact objects: the iron Kalpha line at ~6.5 keV. The energy, profile, and variability of this emission line, and the properties of the surrounding continuum emission, shaped by General Relativity (GR) effects, provide a unique probe of gravity in its strong field limit. Among its prime targets are hundreds of supermassive black holes in bright Active Galactic Nuclei (AGN), which form the perfect laboratory to help understand the physical processes behind black hole growth. Accretion plays a fundamental role in the shaping of galaxies throughout cosmic time, via the process of feedback. Modest (~sub-arcmin) spatial resolution would deliver the necessary sensitivity to extend high quality X-ray spectroscopy of AGN to cosmologically-relevant distances. Closer to home, ultra-high count rate capabilities and sub-millisecond time resolution enable the study of GR effects and the equation of state of dense matter in the brightest X-ray binaries in our own Galaxy, using multiple probes, such as the broad iron line, the shape of the disk continuum emission, quasi-periodic oscillations, reverberation mapping, and X-ray burst oscillations. Despite its breakthrough capabilities, all enabling technologies for GRAVITAS are already in a high state of readiness. It is based on ultra light-weight X-ray optics and a focal plane detector using silicon technology.
The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. There are now more than 200 such objects known, and the recent detection of planets with masses approximately 5 times that of Earth demonstrates that extra-solar planets of low mass exist. In addition to providing a wealth of scientific information on the formation and structure of planetary systems, these discoveries capture the interest of both scientists and the wider public with the profound prospect of the search for life in the Universe. We propose an L-type mission, called Darwin, whose primary goal is the study of terrestrial extrasolar planets and the search for life on them. By its very nature, Darwin advances the first Grand Theme of ESA Cosmic Vision. Accomplishing the mission objectives will require collaborative science across disciplines ranging from planet formation and atmospheres to chemistry and biology, and these disciplines will reap profound rewards from their contributions to the Darwin mission.
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing near-field radial velocity and transiting exoplanets with far-field microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclids VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.
We propose a new mission called Space Project for Astrophysical and Cosmological Exploration (SPACE) as part on the ESA long term planning Voyage 2050 programme. SPACE will study galaxy evolution at the earliest times, with the key goals of charting the formation of the heavy elements, measuring the evolution of the galaxy luminosity function, tracing the build-up of stellar mass in galaxies over cosmic time, and finding the first super-massive black holes (SMBHs) to form. The mission will exploit a unique region of the parameter space, between the narrow ultra-deep surveys with HST and JWST, and shallow wide-field surveys such as Roman Space Telescope and EUCLID, and should yield by far the largest sample of any current or planned mission of very high redshift galaxies at z > 10 which are sufficiently bright for detailed follow-up spectroscopy. Crucially, we propose a wide-field spectroscopic near-IR + mid-IR capability which will greatly enhance our understanding of the first galaxies by detecting and identifying a statistical sample of the first galaxies and the first SMBH, and to chart the metal enrichment history of galaxies in the early Universe - potentially finding signatures of the very first stars to form from metal-free primordial gas. The wide-field and wavelength range of SPACE will also provide us a unique opportunity to study star formation by performing a wide survey of the Milky Way in the near-IR + mid-IR. This science project can be enabled either by a stand-alone ESA-led M mission or by an instrument for an L mission (with ESA and/or NASA, JAXA and other international space agencies) with a wide-field (sub-)millimetre capability at wavelength > 500 microns.
We present the SVOM (Space-based multi-band astronomical Variable Objects Monitor) mission that the Chinese National Space Agency and the French Space Agency have decided to jointly implement. SVOM has been designed to detect all known types of gamma-ray bursts (GRBs), to provide fast and reliable GRB positions, to measure the broadband spectral shape and temporal properties of the GRB prompt emission, and to quickly identify the optical/near-infrared afterglows of detected GRBs, including high-redshift ones. Scheduled to be in orbit in the second half of the present decade, the SVOM satellite will carry a very innovative scientific payload combining for the first time a wide field X- and gamma-ray coded mask imager for GRB real-time localizations to few arcmin, a non-imaging gamma-ray monitor, and two narrow-field instruments for the study of the GRB early afterglow emission in the X-ray and visible bands. The SVOM payload is complemented by ground-based instruments including a wide-field camera to catch the GRB prompt emission in the visible band and two robotic telescopes to measure the photometric properties of the early afterglow. A particular attention is paid to the GRB follow-up in facilitating the observation of the SVOM detected GRB by the largest ground based telescopes.
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The mission enabling impact of laboratory astrophysics ranges from the scientific conception stage for airborne and space-based observatories, all the way through to the scientific return of these missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA. These efforts are necessary for the success of astronomical research being funded by NASA. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics (WGLA), have prepared this White Paper on the laboratory astrophysics infrastructure needed to maximize the scientific return from NASAs space and Earth sciences program.