Do you want to publish a course? Click here

Magnetic field induced dehybridization of the electromagnons in multiferroic TbMnO3

314   0   0.0 ( 0 )
 Added by Maximilien Cazayous
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the impact of the magnetic field on the electromagnon excitations in TbMnO3 crystal. Applying magnetic field along the c axis, we show that the electromagnons transform into pure antiferromagnetic modes, losing their polar character. Entering in the paraelectric phase, we are able to track the spectral weight transfer from the electromagnons to the magnon excitations and we discuss the magnetic excitations underlying the electromagnons. We also point out the phonons involved in the phase transition process. This reveals that the Mn-O distance plays a key role in understanding the ferroelectricity and the polar character of the electromagnons. Magnetic field measurements along the b axis allow us to detect a new electromagnon resonance in agreement with a Heisenberg model.



rate research

Read More

We have used in-field neutron and X-ray single crystal diffraction to measure the incommensurability δ of the crystal and magnetic structure of multiferroic TbMnO3 . We show that the flop in the electric polarization at the critical field HC, for field H along the a− and b−axis coincides with a 1st order transition to a commensurate phase with propagation vector κ = (0, 1/4, 0). In-field X-ray diffraction measurements show that the quadratic magneto-elastic coupling breaks down with applied field as shown by the observation of the 1st harmonic lattice reflections above and below HC . This indicates that magnetic field induces a linear magneto-elastic coupling. We argue that the commensurate phase can be described by an ordering of Mn-O-Mn bond angles.
81 - D. Senff , P. Link , K. Hradil 2006
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5meV-mode is in perfect agreement with recent infra-red-spectroscopy data giving strong support to its interpretation as an hybridized phonon-magnon excitation.
We measured the temperature dependent infrared reflectivity spectra of TbMnO3 with the electric field of light polarized along each of the three crystallographic axes. We analyzed the effect, on the phonon spectra, of the different phase transitions occurring in this material. We show that the antiferromagnetic transition at TN renormalizes the phonon parameters along the three directions. Our data indicate that the electromagnon, observed along the a direction, has an important contribution to the building of the dielectric constant. Only one phonon, observed along the c-axis, has anomalies at the ferroelectric transition. This phonon is built mostly from Mn vibrations, suggesting that Mn displacements are closely related to the formation of the ferroelectric order.
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.
A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multiferroic TbMnO3 is dramatically modified by epitaxial strain. Neutron diffraction reveals that in highly strained films the magnetic order changes from the bulk-like incommensurate bc-cycloidal structure to commensurate magnetic order. Concomitant with the modification of the magnetic ground state, optical second-harmonic generation (SHG) and electric measurements show an enormous increase of the ferroelectric polarization, and a change in its direction from along the c- to the a-axis. Our results suggest that the drastic change of multiferroic properties results from a switch of the spin-current magnetoelectric coupling in bulk TbMnO3 to symmetric magnetostriction in epitaxially-strained TbMnO3. These findings experimentally demonstrate that epitaxial strain can be used to control single-phase spin-driven multiferroic states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا