Do you want to publish a course? Click here

Time- and frequency-domain polariton interference

158   0   0.0 ( 0 )
 Added by Geoff Campbell Mr.
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present experimental observations of interference between an atomic spin coherence and an optical field in a {Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.



rate research

Read More

Frequency encoding of quantum information together with fiber and integrated photonic technologies can significantly reduce the complexity and resource requirements for realizing all-photonic quantum networks. The key challenge for such frequency domain processing of single photons is to realize coherent and selective interactions between quantum optical fields of different frequencies over a range of bandwidths. Here, we report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator. We use four-wave mixing to implement an active frequency beam-splitter and achieve interference visibilities of $0.95 pm 0.02$. Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain which, combined with integrated single-photon sources, provides a building block for frequency-multiplexed photonic quantum networks.
239 - J. Gil-Lopez , Y. S. Teo , S. De 2021
We implement a compressive quantum state tomography capable of reconstructing any arbitrary low-rank spectral-temporal optical signal with extremely few measurement settings and without any emph{ad hoc} assumptions about the initially unknown signal. This is carried out with a quantum pulse gate, a device that flexibly implements projections onto arbitrary user-specified optical modes. We present conclusive experimental results for both temporal pulsed modes and frequency bins, which showcase the versatility of our randomized compressive method and thereby introduce a universal optical reconstruction framework to these platforms.
Pairs of photons entangled in their time-frequency degree of freedom are of great interest in quantum optics research and applications, due to their relative ease of generation and their high capacity for encoding information. Here we analyze, both theoretically and experimentally, the behavior of phase-insensitive spectrally-resolved interferences arising from two pairs of time-frequency entangled photons. At its core, this is a multimode entanglement swapping experiment, whereby a spectrally resolved joint measurement on the idler photons from both pairs results in projecting the signal photons onto a Bell state whose form depends on the measurement outcome. Our analysis is a thorough exploration of what can be achieved using time-frequency entanglement and spectrally-resolved Bell-state measurements.
Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration ($10^{-18}$s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses may raise serious issues in the interpretation of the experimental results and the comparison with detailed theoretical calculations. Here, we determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake up, where a second electron is left in an excited state, thus obtaining excellent agreement with theoretical calculations and thereby solving a puzzle raised by seven-year-old measurements. Our experimental approach does not have conceptual limits, allowing us to foresee, with the help of upcoming laser technology, ultra-high resolution time-frequency studies from the visible to the x-ray range.
54 - T.W. Hijmans , T.N. Huussen , 2006
We present new results on an optical implementation of Grovers quantum search algorithm. This extends previous work in which the transverse spatial mode of a light beam oscillates between a broad initial input shape and a highly localized spike, which reveals the position of the tagged item. The spike reaches its maximum intensity after $simsqrt N$ round trips in a cavity equipped with two phase plates, where $N$ is the ratio of the surface area of the original beam and the area of the phase spot or tagged item. In our redesigned experiment the search space is now two-dimensional. In the time domain we demonstrate for the first time a multiple item search where the items appear directly as bright spots on the images of a gated camera. In a complementary experiment we investigate the searching cavity in the frequency domain. The oscillatory nature of the search algorithm can be seen as a splitting of cavity eigenmodes, each of which concentrates up to 50% of its power in the bright spot corresponding to the solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا