Do you want to publish a course? Click here

Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots

304   0   0.0 ( 0 )
 Added by Matthew Borselli
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate double quantum dots fabricated in undoped Si/SiGe heterostructures relying on a double top-gated design. Charge sensing shows that we can reliably deplete these devices to zero charge occupancy. Measurements and simulations confirm that the energetics are determined by the gate-induced electrostatic potentials. Pauli spin blockade has been observed via transport through the double dot in the two electron configuration, a critical step in performing coherent spin manipulations in Si.

rate research

Read More

We report on a quantum dot device design that combines the low disorder properties of undoped SiGe heterostructure materials with an overlapping gate stack in which each electrostatic gate has a dominant and unique function -- control of individual quantum dot occupancies and of lateral tunneling into and between dots. Control of the tunneling rate between a dot and an electron bath is demonstrated over more than nine orders of magnitude and independently confirmed by direct measurement within the bandwidth of our amplifiers. The inter-dot tunnel coupling at the (0,2)<-->(1,1) charge configuration anti-crossing is directly measured to quantify the control of a single inter-dot tunnel barrier gate. A simple exponential dependence is sufficient to describe each of these tunneling processes as a function of the controlling gate voltage.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quantum dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
95 - M. Kondo , S. Miyota , W. Izumida 2021
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecting the transport properties. As the temperature increases, the quadruplet Pauli spin blockade occurs as a result of the thermal energy, even in regions where it does not occur at low temperatures. This is because the triplet state is formed in one dot as a result of the gradual change of the Fermi distribution function of the electrodes with increasing temperature. Moreover, the thermally assisted Pauli spin blockade results in coexistence of the Coulomb and Pauli spin blockades. Conversely, for the standard triplet Pauli spin blockade, which occurs as a result of the triplet and singlet states, the current through the double dots monotonously smears out as the temperature increases. Therefore, the thermally assisted Pauli spin blockade is not clearly observed. However, the coexistence of the Coulomb and triplet Pauli spin blockades as a result of the thermal energy is clearly obtained in the calculation of the probability of the spin state in the double dots.
Pauli blockade mechanisms -- whereby carrier transport through quantum dots (QDs) is blocked due to selection rules even when energetically allowed -- are of both fundamental and technological interest, as a direct manifestation of the Pauli exclusion principle and as a key mechanism for manipulating and reading out spin qubits. Pauli spin blockade is well established for systems such as GaAs QDs, where the two-electron spin-singlet ground state is separated from the three triplet states higher in energy. However, Pauli blockade physics remains largely unexplored for systems in which the Hilbert space is expanded due to additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or silicon. Here we report experiments on coupled graphene double QDs in which the spin and valley states can be precisely controlled. We demonstrate that gate and magnetic-field tuning allows switching between a spin-triplet--valley-singlet ground state with charge occupancy (2,0), where valley-blockade is observed, and a spin-singlet--valley-triplet ground state, where spin blockade is shown. These results demonstrate how the complex two-particle Hilbert space of graphene quantum dots can be unravelled experimentally, with implications for future spin and valley qubits.
Interactions between electrons can strongly affect the shape and functionality of multi-electron quantum dots. The resulting charge distributions can be localized, as in the case of Wigner molecules, with consequences for the energy spectrum and tunneling to states outside the dot. The situation is even more complicated for silicon dots, due to the interplay between valley, orbital, and interaction energy scales. Here, we study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field, using a combination of tight-binding and full-configuration-interaction (FCI) methods, and taking into account atomic-scale disorder at the quantum well interface. We model dots based on recent qubit experiments, which straddle the boundary between strongly interacting and weakly interacting systems, and display a rich and diverse range of behaviors. Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet (ST) excitation energy. However, when the valley-orbit interactions caused by interfacial disorder are weak, the ST splitting can approach its noninteracting value, even when the electron-electron interactions are strong and Wigner-molecule behavior is observed. These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا