Do you want to publish a course? Click here

The environment and characteristics of low redshift galaxies detected by the Herschel-ATLAS

270   0   0.0 ( 0 )
 Added by Ali.Akbar Dariush
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ultraviolet and optical properties and environment of low redshift galaxies detected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) science demonstration data. We use the Sloan Digital Sky Survey seventh release and the Galaxy And Mass Assembly database to select galaxies with r_Petro < 19.0 mag in the redshift range 0.02 < z < 0.2 and look for their submillimeter counterparts in H-ATLAS. Our results show that at low redshift, H-ATLAS detects mainly blue/star-forming galaxies with a minor contribution from red systems which are highly obscured by dust. In addition we find that the colour of a galaxy rather than the local density of its environment determines whether it is detectable by H-ATLAS. The average dust temperature of galaxies that are simultaneously detected by both PACS and SPIRE is 25K pm 4K, independent of environment. This analysis provides a glimpse of the potential of the H-ATLAS data to investigate the submillimeter properties of galaxies in the local universe.



rate research

Read More

195 - S. J. Maddox , L. Dunne , E. Rigby 2010
We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micron-selected sample we detect no significant clustering, consistent with the expectation that the 250 micron-selected sources are mostly normal galaxies at z<~ 1. For our 350 micron and 500 micron-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1, but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2-3 we detect significant strong clustering, leading to an estimate of r_0 ~ 7-11 h^{-1} Mpc. The slope of our clustering measurements is very steep, delta~2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.
We have measured the clustering properties of low-redshift (z < 0.3) sub-mm galaxies detected at 250 micron in the Herschel-ATLAS Science Demonstration Phase (SDP) field. We selected a sample for which we have high-quality spectroscopic redshifts, obtained from reliably matching the 250-micron sources to a complete (for r < 19.4) sample of galaxies from the GAMA database. Both the angular and spatial clustering strength are measured for all z < 0.3 sources as well as for five redshift slices with thickness delta z=0.05 in the range 0.05 < z < 0.3. Our measured spatial clustering length r_0 is comparable to that of optically-selected, moderately star-forming (blue) galaxies: we find values around 5 Mpc. One of the redshift bins contains an interesting structure, at z = 0.164.
We present measurements of the angular correlation function of sub-millimeter (sub-mm) galaxies (SMGs) identified in four out of the five fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) - GAMA-9h, GAMA-12h, GAMA-15h and NGP - with flux densities $S_{250mu m}$>30 mJy at 250 {mu}m. We show that galaxies selected at this wavelength trace the underlying matter distribution differently at low and high redshifts. We study the evolution of the clustering finding that at low redshifts sub-mm galaxies exhibit clustering strengths of $r_0$ $sim$ 2 - 3 $h^{-1}$ Mpc, below z < 0.3. At high redshifts, on the other hand, we find that sub-mm galaxies are more strongly clustered with correlation lengths $r_0$ = 8.1 $pm$ 0.5, 8.8 $pm$ 0.8 and 13.9 $pm$ 3.9 $h^{-1}$Mpc at z = 1 - 2, 2 - 3 and 3 - 5, respectively. We show that sub-mm galaxies across the redshift range 1 < z < 5, typically reside in dark-matter halos of mass of the order of ~ $10^{12.5}$ - $10^{13.0}$ $h^{-1} , M_{odot}$ and are consistent with being the progenitors of local massive elliptical galaxies that we see in the local Universe.
We present the first measurement of the correlation between the map of the cosmic microwave background (CMB) lensing potential derived from the emph{Planck} nominal mission data and $zgtrsim 1.5$ galaxies detected by the emph{Herschel}-ATLAS (H-ATLAS) survey covering about $600,hbox{deg}^2$, i.e. about 1.4% of the sky. We reject the hypothesis that there is no correlation between CMB lensing and galaxy detection at a $20,sigma$ significance, checking the result by performing a number of null tests. The significance of the detection of the theoretically expected cross-correlation signal is found to be $10,sigma$. The galaxy bias parameter, $b$, derived from a joint analysis of the cross-power spectrum and of the auto-power spectrum of the galaxy density contrast is found to be $b=2.80^{+0.12}_{-0.11}$, consistent with earlier estimates for H-ATLAS galaxies at similar redshifts. On the other hand, the amplitude of the cross-correlation is found to be a factor $1.62 pm 0.16$ higher than expected from the standard model and also found by cross-correlation analyses with other tracers of the large-scale structure. The enhancement due to lensing magnification can account for only a fraction of the excess cross-correlation signal. We suggest that part of it may be due to an incomplete removal of the contamination of the CIB, that includes the H-ATLAS sources we are cross-correlating with. In any case, the highly significant detection reported here using a catalog covering only 1.4% of the sky demonstrates the potential of CMB lensing correlations with submillimeter surveys.
354 - A. Amblard , A. Cooray , P. Serra 2010
We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500 microns using both PACS and SPIRE. We fit isothermal modified black bodies to the spectral energy distribution (SED) to extract the dust temperature of sources with counterparts in Galaxy And Mass Assembly (GAMA) or SDSS surveys with either a spectroscopic or a photometric redshift. For a subsample of 330 sources detected in at least three FIR bands with a significance greater than 3 $sigma$, we find an average dust temperature of $(28 pm 8)$K. For sources with no known redshift, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters, and compare to colours of observed sources to establish the redshift distribution of this sample. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3$sigma$, we find an average redshift of $2.2 pm 0.6$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا