Do you want to publish a course? Click here

Fourier analysis of non-Blazhko ab-type RR Lyrae stars observed with the Kepler space telescope

143   0   0.0 ( 0 )
 Added by James Nemec
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nineteen of the ~40 RR Lyr stars in the Kepler field have been identified as candidate non-Blazhko (or unmodulated) stars. In this paper we present the results of Fourier decomposition of the time-series photometry of these stars acquired during the first 417 days of operation (Q0-Q5) of the Kepler telescope. Fourier parameters based on ~18400 long-cadence observations per star (and ~150000 short-cadence observations for FN Lyr and for AW Dra) are derived. None of the stars shows the recently discovered `period-doubling effect seen in Blazhko variables; however, KIC 7021124 has been found to pulsate simultaneously in the fundamental and second overtone modes with a period ratio P2/P0 ~ 0.59305 and is similar to the double-mode star V350 Lyr. Period change rates are derived from O-C diagrams spanning, in some cases, over 100 years; these are compared with high-precision periods derived from the Kepler data alone. Extant Fourier correlations by Kovacs, Jurcsik et al. (with minor transformations from the V to the Kp passband) have been used to derive underlying physical characteristics for all the stars. This procedure seems to be validated through comparisons of the Kepler variables with galactic and LMC RR Lyr stars. The most metal-poor star in the sample is NR Lyr, with [Fe/H]=-2.3 dex; and the four most metal-rich stars have [Fe/H] ranging from -0.6 to +0.1 dex. Pulsational luminosities and masses are found to be systematically smaller than L and mass values derived from stellar evolution models, and are favoured over the evolutionary values when periods are computed with the Warsaw linear hydrodynamics code. Finally, the Fourier parameters are compared with theoretical values derived using the Warsaw non-linear convective pulsation code.



rate research

Read More

150 - J.M. Nemec 2011
This paper summarizes the main results of our recent study of the non-Blazhko RR Lyrae stars observed with the Kepler space telescope. These stars offer the opportunity for studying the stability of the pulsations of RR Lyrae stars and for providing a reference against which the Blazhko RR Lyrae stars can be compared. Of particular interest is the stability of the low-dispersion (sigma < 1mmag) light curves constructed from ~18,000 long-cadence (30-min) and (for FN Lyr and AW Dra) the ~150,000 short-cadence (1-min) photometric data points. Fourier-based [Fe/H] values and other physical characteristics are also derived. When the observed periods are compared with periods computed with the Warsaw non-linear convective pulsation code better agreement is achieved assuming pulsational L and M values rather than the (higher) evolutionary L and M values.
106 - Emese Plachy , Robert Szabo 2020
The unprecedented photometric precision along with the quasi-continuous sampling provided by the Kepler space telescope revealed new and unpredicted phenomena that reformed and invigorated RR Lyrae star research. The discovery of period doubling and the wealth of low-amplitude modes enlightened the complexity of the pulsation behavior and guided us towards nonlinear and nonradial studies. Searching and providing theoretical explanation for these newly found phenomena became a central question, as well as understanding their connection to the oldest enigma of RR Lyrae stars, the Blazhko effect. We attempt to summarize the highest impact RR Lyrae results based on or inspired by the data of the Kepler space telescope both from the nominal and the K2 missions. Besides the three most intriguing topics, the period doubling, the low-amplitude modes, and the Blazhko effect, we also discuss the challenges of Kepler photometry that played a crucial role in the results. The secrets of these amazing variables, uncovered by Kepler, keep the theoretical, ground-based and space-based research inspired in the post-Kepler era, since light variation of RR Lyrae stars is still not completely understood.
157 - R. Szabo 2013
The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, like extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts now provide us with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these lines I present the latest efforts and advances from the theoretical point of view. Lastly, amplitude variations in Cepheids are discussed.
The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity-light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity-light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be $[Fe/H]_{PTF} = -4.089 - 7.346 P + 1.280 phi_{31}$ (where $P$ is pulsational period and $phi_{31}$ is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity-light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity-light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values.
206 - A. sodor 2007
About a dozen field RR Lyrae stars have been observed with the 24-inch Heyde-Zeiss telescope of the Konkoly Observatory at Svabhegy, Budapest, since its refurbishment in 2003. Most of the observing time is allocated for the investigation of the Blazhko modulation, a phenomenon that still does not have a satisfactory explanation. The obtained multicolour CCD observations are unique in extent. The accuracy of the measurements makes it possible to detect low amplitude modulation of the light curve as well. The discovery of Blazhko stars with low modulation amplitudes warns that the incidence rate of the Blazhko modulation is, in fact, much larger than it was previously expected. This makes the efforts exploring the cause of the modulation even more important. A summary of our measurements and results achieved during the last 3 years is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا