Do you want to publish a course? Click here

Permission-Based Separation Logic for Message-Passing Concurrency

138   0   0.0 ( 0 )
 Added by Adrian Francalanza
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We develop local reasoning techniques for message passing concurrent programs based on ideas from separation logics and resource usage analysis. We extend processes with permission- resources and define a reduction semantics for this extended language. This provides a foundation for interpreting separation formulas for message-passing concurrency. We also define a sound proof system permitting us to infer satisfaction compositionally using local, separation-based reasoning.



rate research

Read More

135 - Christian Haack 2014
This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented.
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs.
126 - Roy Mennicke 2013
The model checking problem for propositional dynamic logic (PDL) over message sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given a channel bound $B$, a PDL formula $varphi$ and a CFM $mathcal{C}$, whether every existentially $B$-bounded MSC $M$ accepted by $mathcal{C}$ satisfies $varphi$. Recently, it was shown that this problem is PSPACE-complete. In the present work, we consider CRPDL over MSCs which is PDL equipped with the operators converse and repeat. The former enables one to walk back and forth within an MSC using a single path expression whereas the latter allows to express that a path expression can be repeated infinitely often. To solve the model checking problem for this logic, we define message sequence chart automata (MSCAs) which are multi-way alternating parity automata walking on MSCs. By exploiting a new concept called concatenation states, we are able to inductively construct, for every CRPDL formula $varphi$, an MSCA precisely accepting the set of models of $varphi$. As a result, we obtain that the model checking problem for CRPDL and CFMs is still in PSPACE.
66 - Wytse Oortwijn 2016
Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.
In this paper, we explore how, and if, free choice permission (FCP) can be accepted when we consider deontic conflicts between certain types of permissions and obligations. As is well known, FCP can license, under some minimal conditions, the derivation of an indefinite number of permissions. We discuss this and other drawbacks and present six Hilbert-style classical deontic systems admitting a guarded version of FCP. The systems that we present are not too weak from the inferential viewpoint, as far as permission is concerned, and do not commit to weakening any specific logic for obligations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا