Do you want to publish a course? Click here

Graphene Nanomeshes: Existence of Defect-Induced Dirac Fermions on Graphene Host Matrix

125   0   0.0 ( 0 )
 Added by Hasan Sahin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the state of the art method for fabricating high density periodic nanoscale defects in graphene, the structural, mechanical and electronic properties of defect-patterned graphene nanomeshes including diverse morphologies of adatoms and holes are investigated by means of first-principles calculations within density functional theory. It is found that various patterns of adatom groups yield metallic or semimetallic, even semiconducting behavior and specific patterns can be in a magnetic state. Even though the patterns of single adatoms dramatically alter the electronic structure of graphene, adatom groups of specific symmetry can maintain the Dirac fermion behavior. Nanoholes forming nanomesh are also investigated. Depending on the interplay between the repeat periodicity and the geometry of the hole, the nanomesh can be in different states ranging from metallic to semiconducting including semimetallic state with the bands crossing linearly at the Fermi level. We showed that forming periodically repeating superstructures in graphene matrix can develop a promising technique to engineer nanomaterials with desired electronic and magnetic properties.



rate research

Read More

Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether and to what degree their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical co-dopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition, with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac fermions in otherwise semiconducting graphene-like nanoribbons.
At high phonon temperature, defect-mediated electron-phonon collisions (supercollisions) in graphene allow for larger energy transfer and faster cooling of hot electrons than the normal, momentum-conserving electron-phonon collisions. Disorder also affects the heat flow between electrons and phonons at very low phonon temperature, where the phonon wavelength exceeds the mean free path. In both cases, the cooling rate is predicted to exhibit a characteristic cubic power law dependence on the electron temperature, markedly different from the T^4 dependence predicted for pristine graphene. The impact of defect-induced cooling on the performance of optoelectronic devices is still largely unexplored. Here we study the cooling mechanism of hot-electron bolometers based on epitaxial graphene quantum dots where the defect density can be controlled with the fabrication process. The devices with high defect density exhibit the cubic power law. Defect-induced cooling yields a slower increase of the thermal conductance with increasing temperature, thereby greatly enhancing the device responsivity compared to devices with lower defect density and operating with normal-collision cooling.
Quantum point contacts (QPCs) are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wave-length in high-quality bulk graphene can be tuned up to hundreds of nanometers, the observation of quantum confinement of Dirac electrons in nanostructured graphene systems has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically-defined graphene constrictions. At high charge carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity ($v_F approx 1.5 times 10^6 m/s$) in our graphene constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.
We theoretically study the Dirac fermion dynamics in a graphene monolayer in the presence of an applied ultrafast laser pulse. The pulse has the duration of a few femtoseconds and the amplitude of ~ 0.1 - 0.5 $mathrm{V/AA}$. The waveform of the pulse is described by Hermit Gaussian polynomials with varying carrier-envelope phase. We show that the ultrafast dynamics of Dirac fermions strongly depends on the carrier-envelope phase and the frequency of the applied pulse. The ultrafast pulse generates an electric current which results in a finite transferred charge. The ultrafast field-driven current and the corresponding net transferred charge depend on the waveform of the applied pulse. Our results pave the way for the development of ultrafast information processing in the terahertz domain.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا