Do you want to publish a course? Click here

Robust preparation and manipulation of protected qubits using time--varying Hamiltonians

242   0   0.0 ( 0 )
 Added by Thomas Coudreau
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that it is possible to initialize and manipulate in a deterministic manner protected qubits using time varying Hamiltonians. Taking advantage of the symmetries of the system, we predict the effect of the noise during the initialization and manipulation. These predictions are in good agreement with numerical simulations. Our study shows that the topological protection remains efficient under realistic experimental conditions.



rate research

Read More

We propose a topological plasmonic crystal structure composed of an array of parallel nanowires with unequal spacing. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schr{o}dinger equation of the Su-Schrieffer-Heeger (SSH) model. Using full three-dimensional finite difference time domain solution of the Maxwell equations we demonstrate the existence of topological defect modes, with sub-wavelength localization, bound to kinks of the plasmonic crystal. Furthermore, we show that by manipulating kinks we can construct spatial mode filters, that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are robust to fabrication errors with inverse length-scale smaller than the topological band gap.
We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors.
Transferring quantum information between distant nodes of a network is a key capability. This transfer can be realized via remote state preparation where two parties share entanglement and the sender has full knowledge of the state to be communicated. Here we demonstrate such a process between heterogeneous nodes functioning with different information encodings, i.e., particle-like discrete-variable optical qubits and wave-like continuous-variable ones. Using hybrid entanglement of light as a shared resource, we prepare arbitrary coherent-state superpositions controlled by measurements on the distant discrete-encoded node. The remotely prepared states are fully characterized by quantum state tomography and negative Wigner functions are obtained. This work demonstrates a novel capability to bridge discrete- and continuous-variable platforms.
The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy (NV) center electronic spin hyperfine-coupled to nearby nuclear spins. We demonstrate individual control and readout of five nuclear spin qubits within one node. We then characterize the storage of quantum superpositions in individual nuclear spins under repeated application of a probabilistic optical inter-node entangling protocol. We find that the storage fidelity is limited by dephasing during the electronic spin reset after failed attempts. By encoding quantum states into a decoherence-protected subspace of two nuclear spins we show that quantum coherence can be maintained for over 1000 repetitions of the remote entangling protocol. These results and insights pave the way towards remote entanglement purification and the realisation of a quantum repeater using NV center quantum network nodes.
We present the theoretical basis for and experimental verification of arbitrary single-qubit state generation, using the polarization of photons generated via spontaneous parametric downconversion. Our precision measurement and state reconstruction system has the capability to distinguish over 3 million states, all of which can be reproducibly generated using our state creation apparatus. In order to complete the triumvirate of single qubit control, there must be a way to not only manipulate single qubits after creation and before measurement, but a way to characterize the manipulations emph{themselves}. We present a general representation of arbitrary processes, and experimental techniques for generating a variety of single qubit manipulations, including unitary, decohering, and (partially) polarizing operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا