Field theories in black hole spacetimes undergo dimensional reduction near horizon (in the Rindler limit) to two dimensional conformal field theories. We investigate this enhancement of symmetries in the context of gauge/gravity duality by considering Rindler space as boundary of Anti-de Sitter space in three spacetime dimensions. We show that the loxodromy conjugacy class of the SO(2,2) isometry group is responsible for generating the special conformal transformations on the boundary under RG flow. We use this approach to present an alternative derivation of the two-point function in Rindler space using AdS/CFT correspondence.
We study, using the dual AdS description, the vacua of field theories where some of the gauge symmetry is broken by expectation values of scalar fields. In such vacua, operators built out of the scalar fields acquire expectation values, and we show how to calculate them from the behavior of perturbations to the AdS background near the boundary. Specific examples include the ${cal N}=4$ SYM theory, and theories on D3 branes placed on orbifolds and conifolds. We also clarify some subtleties of the AdS/CFT correspondence that arise in this analysis. In particular, we explain how scalar fields in AdS space of sufficiently negative mass-squared can be associated with CFT operators of {it two} possible dimensions. All dimensions are bounded from below by $(d-2)/2$; this is the unitarity bound for scalar operators in $d$-dimensional field theory. We further argue that the generating functional for correlators in the theory with one choice of operator dimension is a Legendre transform of the generating functional in the theory with the other choice.
We continue to develop the holographic interpretation of classical conformal blocks in terms of particles propagating in an asymptotically $AdS_3$ geometry. We study $n$-point block with two heavy and $n-2$ light fields. Using the worldline approach we propose and explicitly describe the corresponding bulk configuration, which consists of $n-3$ particles propagating in the conical defect background produced by the heavy fields. We test this general picture in the case of five points. Using the special combinatorial representation of the Virasoro conformal block we compute $5$-point classical block and find the exact correspondence with the bulk worldline action. In particular, the bulk analysis relies upon the special perturbative procedure which treats the $5$-point case as a deformation of the $4$-pt case.
This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to 2-D gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles arising in string theory in the limit of infinite strings, and is relevant for the equivalence of Minkowski and Rindler frame theories.
With a view to understanding extended-BMS symmetries in the framework of the $AdS_4/CFT_3$ correspondence, asymptotically AdS geometries are constructed with null impulsive shockwaves involving a discontinuity in superrotation parameters. The holographic dual is proposed to be a two-dimensional Euclidean defect conformal field localized on a particular timeslice in a three-dimensional conformal field theory on de Sitter spacetime. The defect conformal field theory generates a natural action of the Virasoro algebra. The large radius of curvature limit $elltoinfty$ yields spacetimes with nontrivial extended-BMS charges.
We revisit a non-perturbation theory of quantum gravity in $1.5$ order underlying an emergent gravitational pair of $(4{bar 4})$-brane with a renewed interest. In particular the formulation is governed by a geometric torsion ${cal H}_3$ in second order with an on-shell NS form in first order. Interestingly the gravitational pair is sourced by a Kalb-Ramond two form CFT on a $D_5$-brane in $d$$=$$10$ type IIB superstring theory. We show that a generic form theory containing a CFT sector in $d=6$ bulk may be described by a boundary ${rm AdS}_5$ with a quintessence Q. Analysis reveals that the bulk/boundary duality in emergent gravity can be a potential tool to explore the quintessential cosmology.