The dissociation features in nuclear track emulsion of $^9$Be, $^{9,10}$C, and $^{12}$N nuclei of 1.2 A GeV energy are presented. The data presented for the nucleus $^9$Be can be considered as evidence that there is a core in its structure in the form of 0$^+$ and 2$^+$ states of the $^8$Be nucleus having roughly equal weights. Events of coherent dissociation $^9$C$rightarrow 3^3$He associated with the rearrangement of the nucleons outside the $alpha$-clustering are identified. A pattern of the charge fragment topology in the dissociation of $^{10}$C and $^{12}$N nuclei is obtained for the first time. Contribution of the unbound nucleus decays to the cascade process $^{10}$C$rightarrow ^9$B$rightarrow ^8$Be is identified.
Nuclear track emulsion is exposed to 1.2 A $^9$C GeV nuclei. Pairs of 2$^3$He nuclei having unusually narrow opening angles are observed in channel $^9$C $rightarrow$ 3$^3$He pointing to the possible 2$^3$He resonance near the production threshold.
Recent studies of clustering in light nuclei with an initial energy above 1 A GeV in nuclear treack emulsion are overviewed. The results of investigations of the relativistic $^9$Be nuclei fragmentation in emulsion, which entails the production of He fragments, are presented. It is shown that most precise angular measurements provided by this technique play a crucial role in the restoration of the excitation spectrum of the $alpha$ particle sysytem. In peripheral interactions $^9$Be nuclei are dissociated practically totally through the 0$^+$ and 2$^+$ states of the $^8$Be nucleus. The results of investigations of the dissociation of a $^{14}$N nucleus of momentum 2.86 A GeV/c in emulsion are presented as example of more complicated system. The momentum and correlation characteristics of $alpha$ particles for the $^{14}$N$to3alpha+X$ channel in the laboratory system and the rest systems of 3$alpha$ particles were considered in detail. Topology of charged fragments produced in peripheral relativistic dissociation of radioactive $^8$B, $^7$Be nuclei in emulsion is studied.
A nuclear track emulsion was exposed to a mixed beam of relativistic $^{12}$N, $^{10}$C, and $^7$Be nuclei having a momentum of 2 GeV/$c$ per nucleon. The beam was formed upon charge exchange processes involving $^{12}$C primary nuclei and their fragmentation. An analysis indicates that $^{10}$C nuclei are dominant in the beam and that $^{12}$N nuclei are present in it. The charge topology of relativistic fragments in the coherent dissociation of these nuclei is presented.
The dissociation of relativistic $^{12}$N nuclei having a momentum of 2 GeV/c per nucleon and undergoing the most peripheral interactions in a track emulsion is studied. The picture of charged topology of product ensembles of relativistic fragments and special features of their angular distributions are presented.
Production of $alpha$-particle triples in the Hoyle state (HS) in dissociation of ${}^{12}$C nuclei at 3.65 and 0.42 $A$ GeV in nuclear track emulsion is revealed by the invariant mass approach. Contribution of the HS to the dissociation ${}^{12}$C $to$ 3$alpha$ is (11 $pm$ 3) %. Reanalysis of data on coherent dissociation ${}^{16}$O $to$ 4$alpha$ at 3.65 $A$ GeV is revealed the HS contribution of (22 $pm$ 2) %.