Do you want to publish a course? Click here

On a possible observation of dihelion in dissociation of relativistic $^9$C nuclei

77   0   0.0 ( 0 )
 Added by Krivenkov Dmitry
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Nuclear track emulsion is exposed to 1.2 A $^9$C GeV nuclei. Pairs of 2$^3$He nuclei having unusually narrow opening angles are observed in channel $^9$C $rightarrow$ 3$^3$He pointing to the possible 2$^3$He resonance near the production threshold.

rate research

Read More

The dissociation features in nuclear track emulsion of $^9$Be, $^{9,10}$C, and $^{12}$N nuclei of 1.2 A GeV energy are presented. The data presented for the nucleus $^9$Be can be considered as evidence that there is a core in its structure in the form of 0$^+$ and 2$^+$ states of the $^8$Be nucleus having roughly equal weights. Events of coherent dissociation $^9$C$rightarrow 3^3$He associated with the rearrangement of the nucleons outside the $alpha$-clustering are identified. A pattern of the charge fragment topology in the dissociation of $^{10}$C and $^{12}$N nuclei is obtained for the first time. Contribution of the unbound nucleus decays to the cascade process $^{10}$C$rightarrow ^9$B$rightarrow ^8$Be is identified.
indent First results of the exposure of nuclear track emulsions in a secondary beam enriched by $^9$C nuclei at energy of 1.2 A GeV are described. The presented statistics corresponds to the most peripheral $^9$C interactions. For the first time a dissociation $^9$C $to3^3$He not accompanied by target fragments and mesons is identified.par
The dissociation of relativistic $^{12}$N nuclei having a momentum of 2 GeV/c per nucleon and undergoing the most peripheral interactions in a track emulsion is studied. The picture of charged topology of product ensembles of relativistic fragments and special features of their angular distributions are presented.
In the context of the search for triples of relativistic $alpha$-particles in the Hoyle state, the analysis of available data on the dissociation of the nuclei ${}^{12}$C, ${}^{16}$O and ${}^{22}$Ne in the nuclear emulsion was carried out. The Hoyle state is identified by the invariant mass calculated from pair angles of expansion in $alpha$-triples in the approximation of the conservation of the momentum per nucleon of the parent nucleus. The contribution of the Hoyle state to the dissociation of ${}^{12}$C $to$ 3$alpha$ is 11%. In the case of the coherent dissociation of ${}^{16}$O $to$ 4$alpha$ it reaches 22% when the portion of the channel ${}^{16}$O $to$ 2${}^{8}$Be is equal to 5%.
Production of ensembles of $alpha$-particle triples associated with the Hoyle state (the second excited state of the ${}^{12}$C nucleus) in peripheral dissociation of relativistic ${}^{12}$C nuclei is studied. Stacks of nuclear track emulsion pellicles exposed to ${}^{12}$C with an energy from hundreds MeV to a few GeV per nucleon serve as the material for studies. The Hoyle state decays are reconstructed via measurement of emission angles of $alpha$ particles with the precision sufficient for identification of the unstable ${}^{8}$Be nucleus. The estimate of the contribution of Hoyles state to the ${}^{12}$C $to$ 3$alpha$ dissociation is 10-15%.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا