Do you want to publish a course? Click here

Large-scale defect accumulations in Czochralski-grown silicon

266   0   0.0 ( 0 )
 Added by Vladimir Yuryev
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Czochralski-grown silicon crystals were studied by the techniques of the low-angle mid-IR-light scattering and electron-beam-induced current. The large-scale accumulations of electrically-active impurities detected in this material were found to be different in their nature and formation mechanisms from the well-known impurity clouds in a FZ-grown silicon. A classification of the large-scale impurity accumulations in CZ Si is made and point centers constituting them are analyzed in this paper. A model of the large-scale impurity accumulations in CZ-grown Si is also proposed. In addition, the images of the large-scale impurity accumulations obtained by means of the scanning mid-IR-laser microscopy are demonstrated.



rate research

Read More

Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements reveal that photo-excited charge carriers recombine through Pb0 and Pb1 dangling bonds and comparison to precipitate-free material indicates that these are present at both the sample surface and the oxide precipitates. The electronic recombination rates vary approximately linearly with precipitate density. Additional resonance lines arising from iron-boron and interstitial iron are observed and discussed. Our observations are inconsistent with bolometric heating and interpreted in terms of spin-dependent recombination. Electrically detected magnetic resonance is thus a very powerful and sensitive spectroscopic technique to selectively probe recombination centers in modern photovoltaic device materials.
We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 106) were developed successfully with the application of the technique, proving its usefulness in process optimisation.
Silicon-based quantum bits with electron spins in quantum dots or nuclear spins on dopants are serious contenders in the race for quantum computation. Added to process integration maturity, the lack of nuclear spins in the most abundant $^{28}$silicon isotope host crystal for qubits is a major asset for this silicon quantum technology. We have grown $^{28}$silicon epitaxial layers (epilayers) with an isotopic purity greater than 99.992 % on 300mm natural abundance silicon crystals. The quality of the mono-crystalline isotopically purified epilayer conforms to the same drastic quality requirements as the natural epilayers used in our pre-industrial CMOS facility. The isotopically purified substrates are now ready for the fabrication of silicon qubits using a state-of-the-art 300 mm Si CMOS-foundries equipment and processes
173 - Jinhai Mao , Li Huang , Yi Pan 2011
We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.
Topological insulator (TI) materials are exciting candidates for integration into next-generation memory and logic devices because of their potential for efficient, low-energy-consumption switching of magnetization. Specifically, the family of bismuth chalcogenides offers efficient spin-to-charge conversion because of its large spin-orbit coupling and spin-momentum locking of surface states. However, a major obstacle to realizing the promise of TIs is the thin-film materials quality, which lags behind that of epitaxially grown semiconductors. In contrast to the latter systems, the Bi-chalcogenides form by van der Waals epitaxy, which allows them to successfully grow onto substrates with various degrees of lattice mismatch. This flexibility enables the integration of TIs into heterostructures with emerging materials, including two-dimensional materials. However, understanding and controlling local features and defects within the TI films is critical to achieving breakthrough device performance. Here, we report observations and modeling of large-scale structural defects in (Bi,Sb)$_2$Te$_3$ films grown onto hexagonal BN, highlighting unexpected symmetry-breaking rotations within the films and the coexistence of a second phase along grain boundaries. Using first-principles calculations, we show that these defects could have consequential impacts on the devices that rely on these TI films, and therefore they cannot be ignored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا