Do you want to publish a course? Click here

Halo clustering and g_{NL}-type primordial non-Gaussianity

105   0   0.0 ( 0 )
 Added by Kendrick Smith
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A wide range of multifield inflationary models generate non-Gaussian initial conditions in which the initial adiabatic fluctuation is of the form (zeta_G + g_{NL} zeta_G^3). We study halo clustering in these models using two different analytic methods: the peak-background split framework, and brute force calculation in a barrier crossing model, obtaining agreement between the two. We find a simple, theoretically motivated expression for halo bias which agrees with N-body simulations and can be used to constrain g_{NL} from observations. We discuss practical caveats to constraining g_{NL} using only observable properties of a tracer population, and argue that constraints obtained from populations whose observed bias is <~ 2.5 are generally not robust to uncertainties in modeling the halo occupation distribution of the population.



rate research

Read More

Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatures in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
The statistical properties of the primordial perturbations contain clues about the origins of those fluctuations. Although the Planck collaboration has recently obtained tight constraints on primordial non-gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in effort to place independent or competitive limits. The ionized bubbles that formed at redshift z~6-20 during the Epoch of Reionization are seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-gaussianity on the reionization field. The epoch and duration of reionization are affected as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k^2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-gaussianity, we find that primordial non-gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.
Using $N$-body simulations of cosmological large-scale structure formation, for the first time, we show that the anisotropic primordial non-Gaussianity (PNG) causes a scale-dependent modification, given by $1/k^2$ at small $k$ limit, in the three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power spectrum of halo number density field remains unaffected. We discuss that wide-area imaging and spectrocopic surveys observing the same region of the sky allow us to constrain the quadrupole PNG coefficient $f_{rm NL}^{s=2}$ at a precision comparable with or better than that of the cosmic microwave background.
Enormous information about interactions is contained in the non-Gaussianities of the primordial curvature perturbations, which are essential to break the degeneracy of inflationary models. We study the primordial bispectra for G-inflation models predicting both sharp and broad peaks in the primordial scalar power spectrum. We calculate the non-Gaussianity parameter $f_{mathrm{NL}}$ in the equilateral limit and squeezed limit numerically, and confirm that the consistency relation holds in these models. Even though $f_{mathrm{NL}}$ becomes large at the scales before the power spectrum reaches the peak and the scales where there are wiggles in the power spectrum, it remains to be small at the peak scales. Therefore, the contributions of non-Gaussianity to the scalar induced secondary gravitational waves and primordial black hole abundance are expected to be negligible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا