No Arabic abstract
We propose a method to probe time dependent correlations of non trivial observables in many-body ultracold lattice gases. The scheme uses a quantum non-demolition matter-light interface, first, to map the observable of interest on the many body system into the light and, then, to store coherently such information into an external system acting as a quantum memory. Correlations of the observable at two (or more) instances of time are retrieved with a single final measurement that includes the readout of the quantum memory. Such method brings at reach the study of dynamics of many-body systems in and out of equilibrium by means of quantum memories in the field of quantum simulators.
When measuring quantum spins at two or more different times, the later measurements are affected by measurement backaction occurring due to the earlier measurements. This makes the measurement of temporal quantum correlation functions challenging. In this paper, I propose a measurement protocol that mitigates the effect of measurement backaction by exploiting spin selection rules. I show that, under suitable conditions, the effect of measurement backaction on two-time quantum correlations becomes negligible when probing a system consisting of spins with large spin quantum numbers $lgg s$ by coupling it to a spin-$s$ ancilla degree of freedom. A potential application of such a measurement protocol is the probing of an array of Bose-Einstein condensates by light.
Measuring unitarily-evolved quantum mechanical two-time correlations is challenging in general. In a recent paper [P.~Uhrich {em et al.}, Phys. Rev.~A {bf 96}, 022127 (2017)], a considerable simplification of this task has been pointed out to occur in spin-$1/2$ lattice models, bringing such measurements into reach of state-of-the-art or near-future quantum simulators of such models. Here we discuss the challenges of an experimental implementation of measurement schemes of two-time correlations in quantum gas microscopes or microtrap arrays. We propose a modified measurement protocol that mitigates these challenges, and we rigorously estimate the accuracy of the protocols by means of Lieb-Robinson bounds. On the basis of these bounds we identify a parameter regime in which the proposed protocols allow for accurate measurements of the desired two-time correlations.
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus of explorations in physical science for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to realize robust quantum computation. We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators that provide direct signatures of topological order and quantum correlations. Its properties are further revealed by using an atom array with nontrivial topology, representing a first step towards topological encoding. Our observations enable the controlled experimental exploration of topological quantum matter and protected quantum information processing.
We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system using a minimal model. Employing homodyne detection of photons emitted from a laser-driven emitter ensemble into the modes of a waveguide allows to generate intricate dynamical phases. In particular, we show the emergence of a time-crystal phase, the transition to which is controlled by the feedback strength. Feedback enables furthermore the control of many-body quantum correlations, which become manifest in spin squeezing in the emitter ensemble. Developing a theory for the dynamics of fluctuation operators we discuss how the feedback strength controls the squeezing and investigate its temporal dynamics and dependence on system size. The largely analytical results allow to quantify spin squeezing and fluctuations in the limit of large number of emitters, revealing critical scaling of the squeezing close to the transition to the time-crystal. Our study corroborates the potential of integrated emitter-waveguide systems -- which feature highly controllable photon emission channels -- for the exploration of collective quantum phenomena and the generation of resources, such as squeezed states, for quantum enhanced metrology.
Time domain interferometry is a promising method to characterizes spatial and temporal correlations at x-ray energies, via the so-called intermediate scattering function and the related dynamical couple correlations. However, so far, it has only been analyzed for classical target systems. Here, we provide a quantum analysis, and suggest a scheme which allows to access quantum dynamical correlations. We further show how TDI can be used to exclude classical models for the target dynamics, and illustrate our results using a single particle in a double well potential.