Do you want to publish a course? Click here

Evidence of electronic phase arrest and glassy ferromagnetic behaviour in (Nd0.4Gd0.3)Sr0.3MnO3 manganite : Comparative study between bulk and nanometric samples

167   0   0.0 ( 0 )
 Added by Sourav Kundu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of doping of rare earth Gd 3+ ion replacing Nd 3+ in Nd0.7Sr0.3MnO3 is investigated in details. Measurements of resistivity, magnetoresistance, magnetization, linear and non linear ac magnetic susceptibility on chemically synthesized (Nd0.7-xGdx)Sr0.3MnO3 shows various interesting features with doping level x=0.3. Comparative study has been carried out between a bulk and a nanometric sample (grain size ~ 60 nm) synthesized from the same as prepared powder to maintain identical stoichiometry. Resistivity of the samples shows strong dependence on the magnetic field - temperature history. The magnetoresistance of the samples also show strong irreversibility with respect to sweeping of the field between highest positive and negative values. Moreover, resistivity is found to increase with time after field cooling and then switching off the field. All these phenomena have been attributed to phase separation effect and arrest of phases in the samples. Furthermore, the bulk sample displays a spin glass like behaviour as evident from frequency dependence of linear ac magnetic susceptibility and critical divergence of the nonlinear ac magnetic susceptibility. The experimentally obtained characteristic time t after dynamical scaling analysis of the frequency dependence of the ac susceptibility is found to be t=10-17 s which implies that the system is different from a canonical spin glass. An unusual frequency dependence of the second harmonic of ac susceptibility around the magnetic transition temperature led us to designate the magnetic state of the sample to be glassy ferromagnetic. On reduction of grain size low field magnetoresistance and phase arrest phenomena are found to enhance but the glassy state is observed to be destabilized in the nanometric sample.



rate research

Read More

106 - P. Dey , T. K. Nath , P. K. Manna 2007
We have investigated the effect of nanometric grain size on magnetic properties of single phase, nanocrystalline, granular La0.7Ca0.3MnO3 (LCMO) sample. We have considered core-shell structure of our LCMO nanoparticles, which can explain its magnetic properties. From the temperature dependence of field cooled (FC) and zero-field cooled (ZFC) dc magnetization (DCM), the magnetic properties could be distinguished into two regimes: a relatively high temperature regime T > 40 K where the broad maximum of ZFC curve (at T = Tmax) is associated with the blocking of core particle moments, whereas the sharp maximum (at T = TS) is related to the freezing of surface (shell) spins. The unusual shape of M (H) loop at T = 1.5 K, temperature dependent feature of coercive field and remanent magnetization give a strong support of surface spin freezing that are occurring at lower temperature regime (T < 40 K) in this LCMO nanoparticles. Additionally, waiting time (tw) dependence of ZFC relaxation measurements at T = 50 K show weak dependence of relaxation rate [S(t)] on tw and dM/dln(t) following a logarithmic variation on time. Both of these features strongly support the high temperature regime to be associated with the blocking of core moments. At T = 20 K, ZFC relaxation measurements indicates the existence of two different types of relaxation processes in the sample with S(t) attaining a maximum at the elapsed time very close to the wait time tw = 1000 sec, which is an unequivocal sign of glassy behavior. This age-dependent effect convincingly establish the surface spin freezing of our LCMO nanoparticles associated with a background of superparamagnetic (SPM) phase of core moments.
73 - Luis Brey 2006
By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, weakening the ferromagnetic coupling between the Mn ions. In this situation the ferromagnetic order of the Mn spins near the interface is unstable against antiferromagnetic CE correlations, and a separation between ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces can occur. We obtain that the insertion of extra layers of undoped manganite at the interface introduces extra carriers which reinforce the double exchange mechanism and suppress antiferromagnetic instabilities.
Equilibrium crystal structures, electron band dispersions and band gap values of layered GaSe and InSe semiconductors, each being represented by four polytypes, are studied via first-principles calculations within the density functional theory (DFT). A number of practical algorithms to take into account dispersion interactions are tested, from empirical Grimme corrections to many-body dispersion schemes. Due to the utmost technical accuracy achieved in the calculations, nearly degenerate energy-volume curves of different polytypes are resolved, and the conclusions concerning the relative stability of competing polytypes drawn. The predictions are done as for how the equilibrium between different polytypes will be shifted under the effect of hydrostatic pressure. The band structures are inspected under the angle of identifying features specific for different polytypes, and with respect to modifications of the band dispersions brought about by the use of modified Becke-Johnson (mBJ) scheme for the exchange-correlation (XC) potential. As another way to improve the predictions of band gaps values, hybrid functional calculations according to the HSE06 scheme are performed for the band structures, and the relation with the mBJ results discussed. Both methods nicely agree with experimental results and with state-of-the-art GW calculations. Some discrepancies are identified in cases of close competition between the direct and indirect gap (e.g., in GaSe); moreover, the accurate placement of bands revealing relatively localized states is slightly different according to mBJ and HSE06 schemes.
Low dimensional magnetism has been powerfully boosted as a promising candidate for numerous applications. The stability of the long-range magnetic order is directly dependent on the electronic structure and the relative strength of the competing magnetic exchange constants. Here, we report a comparative pressure-dependent theoretical and experimental study of the electronic structure and exchange interactions of two-dimensional ferromagnets CrBr3 and Cr2Ge2Te6 . While CrBr3 is found to be a Mott-Hubbard-like insulator, Cr2Ge2Te6 shows a charge-transfer character due to the broader character of the Te 5p bands at the Fermi level. This different electronic behaviour is responsible of the robust insulating state of CrBr3 , in which the magnetic exchange constants evolve monotonically with pressure, and the proximity to a metal-insulator transition predicted for Cr2Ge2Te6 , which causes a non-monotonic evolution of its magnetic ordering temperature. We provide a microscopic understanding for the pressure evolution of the magnetic properties of the two systems.
The electronic structure of the transparent semiconductor In2O3 has been studied by angle resolved photoemission spectroscopy upon deposition of metallic indium and also tin on the surface of the semiconductor. By deposition of metallic indium on In2O3 (111) single crystals, we detected the formation of a free-electron like band of effective mass (0.38+-0.05) m0. At low coverages, metallic In shifts the Fermi level of In2O3 to higher energies and a new electronic state forms at the metal/semiconductor interface. This state of two-dimensional character (2D-electron gas) is completely responsible for the electrical conduction in In2O3 (111) at the surface region and has a band dispersion, which does not correspond to the previously found surface accumulation layers in this material. Despite the similarity of the electronic properties of In and Sn, a larger downward banding was observed by Sn coverage, which was not accompanied by the appearance of the surface state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا