No Arabic abstract
Recently, a novel mixed-synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators. In mixed-synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified the occurrence of mixed-synchronization states in coupled counter-rotating chaotic piecewise Rossler oscillator. Analytical discussion on approximate stability analysis and numerical confirmation on the experimentally observed behavior is also given.
In this paper we present an experimental setup and an associated mathematical model to study the synchronization of two self sustained strongly coupled mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes, coupled by placing them on a common base, free to move along a horizontal direction. In our system the mass of the oscillating pendula form a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound clockwork slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base coupling the two. Our results indicate that such a system can be made to stabilize in both in-phase anti-phase synchronized state by tuning the parameter mismatch. Results from both numerical simulations and experimental observations are in qualitative agreement and are both reported in the present work.
Para-particles are fascinating because they are neither bosons nor fermions. While unlikely to be found in nature, they might represent accurate descriptions of physical phenomena like topological phases of matter. We report the quantum simulation of para-particle oscillators by tailoring the native couplings of two orthogonal motional modes of a trapped ion. Our system reproduces the dynamics of para-bosons and para-fermions of even order very accurately. These results represent the first experimental analogy of para-particle dynamics in any physical system and demonstrate full control of para-particle oscillators.
Driven by various kinds of noise, ensembles of limit cycle oscillators can synchronize. In this letter, we propose a general formulation of synchronization of the oscillator ensembles driven by common colored noise with an arbitrary power spectrum. To explore statistical properties of such colored noise-induced synchronization, we derive the stationary distribution of the phase difference between two oscillators in the ensemble. This analytical result theoretically predicts various synchronized and clustered states induced by colored noise and also clarifies that these phenomena have a different synchronization mechanism from the case of white noise.
This paper used multi-scale method and KBM method to get approximate solution of coupled Van der Pol oscillators, based on which, researchers investigated the impact several parameters have on the prerequisite of synchronization and the time it takes to synchronize quantitatively. In addition, this paper has a brief introduction of the usage of Kuramoto Model in plural metronomes synchronization and the derivation of Van der Pol oscillator from the discrete model.
This paper deals with two types of synchronous behavior of chaotic oscillators -- generalized synchronization and noise--induced synchronization. It has been shown that both these types of synchronization are caused by similar mechanisms and should be considered as the same type of the chaotic oscillator behavior. The mechanisms resulting in the generalized synchronization are mostly similar to ones taking place in the case of the noise-induced synchronization with biased noise.