Do you want to publish a course? Click here

Fluctuations of time averages for Langevin dynamics in a binding force field

338   0   0.0 ( 0 )
 Added by Andreas Dechant
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive a simple formula for the fluctuations of the time average around the thermal mean for overdamped Brownian motion in a binding potential U(x). Using a backward Fokker-Planck equation, introduced by Szabo, et al. in the context of reaction kinetics, we show that for ergodic processes these finite measurement time fluctuations are determined by the Boltzmann measure. For the widely applicable logarithmic potential, ergodicity is broken. We quantify the large non-ergodic fluctuations and show how they are related to a super-aging correlation function.



rate research

Read More

167 - Yao Chen , Weihua Deng 2020
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, we establish a Langevin system coupled with a subordinator to describe the L{e}vy walk in the time-dependent periodic force field. The effects of external force are detected and carefully analyzed, including nonzero first moment (even though the force is periodic), adding an additional dispersion on the particle position, the consistent influence on the ensemble- and time-averaged mean-squared displacement, etc. Besides, the generalized Klein-Kramers equation is obtained, not only for the time-dependent force but also for space-dependent one.
We study the dynamics of the fluctuations of the variance $s$ of the order parameter of the Gaussian model, following a temperature quench of the thermal bath. At each time $t$, there is a critical value $s_c(t)$ of $s$ such that fluctuations with $s>s_c(t)$ are realized by condensed configurations of the systems, i.e., a single degree of freedom contributes macroscopically to $s$. This phenomenon, which is closely related to the usual condensation occurring on average quantities, is usually referred to as {it condensation of fluctuations}. We show that the probability of fluctuations with $s<inf_t [s_c(t)]$, associated to configurations that never condense, after the quench converges rapidly and in an adiabatic way towards the new equilibrium value. The probability of fluctuations with $s>inf_t [s_c(t)]$, instead, displays a slow and more complex behavior, because the macroscopic population of the condensing degree of freedom is involved.
A Langevin canonical framework for a chiral two--level system coupled to a bath of harmonic oscillators is developed within a coupling scheme different to the well known spin-boson model. Thermal equilibrium values are reached at asymptotic times by solving the corresponding set of non--linear coupled equations in a Markovian regime. In particular, phase difference thermal values (or, equivalently, the so--called coherence factor) and heat capacity through energy fluctuations are obtained and discussed in terms of tunneling rates and asymmetries.
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are build on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems - a one dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb & Dunweg, show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Markov jump processes and overdamped Langevin dynamics. For underdamped dynamics, it has recently been reported that some modification is necessary for application of the TUR. In this study, we present a more generalized TUR, applicable to a system driven by a velocity-dependent force in the context of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [preprint arXiv:1901.05715]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold damping), Brownian dynamics in a magnetic field, and an active particle system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا