Do you want to publish a course? Click here

Enhancement of the Superconducting Transition Temperature with Hydrostatic Pressure in Ca_{3}Ir_{4}Sn_{13} Single Crystals

300   0   0.0 ( 0 )
 Added by Swee Goh
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report high pressure magnetic susceptibility and electrical resistivity measurements on Ca_{3}Ir_{4}Sn_{13} single crystals up to 60 kbar. These measurements allow us to follow the evolution of the superconducting critical temperature T_c, the resistivity anomaly temperature T*, the superconducting coherence length and the Fermi velocity under pressure. The pressure-temperature phase diagram constructed for Ca_{3}Ir_{4}Sn_{13} shows a dome-shaped pressure dependence of T_c. The initial rise in T_c, which is accompanied by a decrease in T*, is consistent with a reduction in the partial gapping of the Fermi surface under pressure.



rate research

Read More

152 - K. Mydeen , E. Lengyel , A. Jesche 2012
We carried out a combined P-substitution and hydrostatic pressure study on CeFeAs_1-xP_xO single crystals in order to investigate the peculiar relationship of the local moment magnetism of Ce, the ordering of itinerant Fe moments, and their connection with the occurrence of superconductivity. Our results evidence a close relationship between the weakening of Fe magnetism and the change from antiferromagnetic to ferromagnetic ordering of Ce moments at p*=1.95 GPa in CeFeAs_0.78P_0.22O. The absence of superconductivity in CeFeAs_0.78P_0.22O and the presence of a narrow and strongly pressure sensitive superconducting phase in CeFeAs_0.70P_0.30O and CeFeAs_0.65P_0.35O indicate the detrimental effect of the Ce magnetism on superconductivity in P-substituted CeFeAsO.
76 - H. Huang , H. Jang , M. Fujita 2017
Compelling efforts to improve the critical temperature ($T_{c}$) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important, however, much remains unclear. Here we studied ortho-III YBa$_{2}$Cu$_{3}$O$_{6.73}$ (YBCO) using x-ray scattering under hydrostatic-pressure (HP) up to ~6.0 GPa. We found the reinforced oxygen order (OO) of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge transfer phenomenon between the CuO$_{2}$ plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge density wave (CDW) signature in CuO$_{2}$ plane under HP. This indicates that the oxygen rearrangement modifies the quenched disorder state in the CuO$_{2}$ plane. Using these results, we appropriately explain why pressure-condition can achieve higher $T_{c}$ compared with the optimal $T_{c}$ under ambient pressure in YBa$_{2}$Cu$_{3}$O$_{6+x}$. As an implication of these results, finally, we have discussed that the change in disorder could make it easier for YBa$_{2}$Cu$_{3}$O$_{6+x}$ to undergo a transition to the nematic order under an external magnetic field.
We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.
151 - M. S. Grbic , M. Pozek , D. Paar 2010
Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-delta}. Measurements were performed on deeply underdoped, slightly underdoped, and overdoped single crystals. The temperature range of the superconducting fluctuations above T_c is determined by an experimental method which is free from arbitrary assumptions about subtracting the nonsuperconducting contributions to the total measured signal, and/or theoretical models to extract the unknown parameters. The superconducting fluctuations are detected in the ab-plane, and c-axis conductivity, by identifying the onset temperature T. Within the sensitivity of the method, this fluctuation regime is found only within a fairly narrow region above T_c. Its width increases from 7 K in the overdoped sample (T_c = 89 K), to at most 23 K in the deeply underdoped sample (T_c = 57 K), so that T falls well below the pseudogap temperature T*. Implications of these findings are discussed in the context of other experimental probes of superconducting fluctuations in the cuprates.
We report on the crystal growth and characterization of ABi3 (A=Ba,Sr) superconductors. Single crystals of both compounds were grown by the self-flux technique. BaBi3 crystallized in a tetragonal structure with space group P4/mmm and SrBi3 in a cubic structure with space group Pm-3m. Superconductivity at Tc = 6.0 K for BaBi3 and Tc = 5.6 K for SrBi3 have been confirmed through dc magnetic susceptibility and electrical transport measurements. The dc magnetic susceptibility under hydrostatic pressure shows a positive pressure coefficient of dTc/dP = 1.22 K/GPa for BaBi3 and a negative pressure coefficient of dTc/dP = -0.48 K/GPa for SrBi3. The normal state electrical resistivity shows that both compounds are highly metallic in nature. The upper critical fields Hc2 evaluated by resistivity under magnetic fields $rho(T,H)$ are 22 kOe for BaBi3 and 2.9 kOe for SrBi3. A specific heat jump of $Delta Ce/gamma Tc = 1.05$ suggests weak coupling superconductivity in BaBi3, whereas $Delta Ce/gamma Tc = 2.08$ for SrBi3 is higher than the BCS theory value of 1.43, indicating a strong coupling superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا