Do you want to publish a course? Click here

Crtierion of effective centre-of-mass method in Quantum Mechanics

180   0   0.0 ( 0 )
 Added by Bo-Yuan Ning
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In describing the motion of atoms and clusters, we face with choosing quantum mechanics or classical mechanics under different conditions. In principle, there exist two criteria for this choice, but they do contradict in some cases though they are in agreement for other cases. Actually, this problem is closely related with the effective centre-of-mass method, the underlying application of quantum mechanics. It is shown that quantum mechanics must be selected for particles motion when the de Broglie wave length of the mass centre is larger than the particle size, and in such case the effective centre-of-mass can be used in Quantum Mechanics. In order to test this conclusion, an easy-manufactured experiment is suggested.



rate research

Read More

80 - Mihaela Vatasescu 2018
We characterize both entanglement and quantum coherence in a molecular system by connecting the linear entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence and local quantum uncertainty on electronic energy. Linear entropy of entanglement and quantifiers of quantum coherence are derived for a molecular system described in a bipartite Hilbert space H=Hel x Hvib of finite dimension Nel x Nv, and relations between them are established. For the specific case of the electronic-vibrational entanglement, we find the linear entropy of entanglement as having a more complex informational content than the von Neumann entropy. By keeping the information carried by the vibronic coherences in a molecule, linear entropy seizes vibrational motion in the electronic potentials as entanglement dynamics. We analyze entanglement oscillations in an isolated molecule, and show examples for the control of entanglement dynamics in a molecule through the creation of coherent vibrational wave packets in several electronic potentials by using chirped laser pulses.
95 - C. R. Calvert 2008
We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)
As demonstrated in our previous work [J. Chem. Phys. 149, 174109 (2018)], the kinetic energy imparted to a quantum rotor by a non-resonant electromagnetic pulse with a Gaussian temporal profile exhibits quasi-periodic drops as a function of the pulse duration. Herein, we show that this behaviour can be reproduced with a simple waveform, namely a rectangular electric pulse of variable duration, and examine, both numerically and analytically, its causes. Our analysis reveals that the drops result from the oscillating populations that make up the wavepacket created by the pulse and that they are necessarily accompanied by drops in the orientation and by a restoration of the pre-pulse alignment of the rotor. Handy analytic formulae are derived that allow to predict the pulse durations leading to diminished kinetic energy transfer and orientation. Experimental scenarios are discussed where the phenomenon could be utilized or be detrimental.
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.
Engineering desired Hamiltonian in quantum many-body systems is essential for applications such as quantum simulation, computation and sensing. Conventional quantum Hamiltonian engineering sequences are designed using human intuition based on perturbation theory, which may not describe the optimal solution and is unable to accommodate complex experimental imperfections. Here we numerically search for Hamiltonian engineering sequences using deep reinforcement learning (DRL) techniques and experimentally demonstrate that they outperform celebrated sequences on a solid-state nuclear magnetic resonance quantum simulator. As an example, we aim at decoupling strongly-interacting spin-1/2 systems. We train DRL agents in the presence of different experimental imperfections and verify robustness of the output sequences both in simulations and experiments. Surprisingly, many of the learned sequences exhibit a common pattern that had not been discovered before, to our knowledge, but has an meaningful analytical description. We can thus restrict the searching space based on this control pattern, allowing to search for longer sequences, ultimately leading to sequences that are robust against dominant imperfections in our experiments. Our results not only demonstrate a general method for quantum Hamiltonian engineering, but also highlight the importance of combining black-box artificial intelligence with understanding of physical system in order to realize experimentally feasible applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا