Do you want to publish a course? Click here

Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

223   0   0.0 ( 0 )
 Added by Helmut Oeschler
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

One of the striking features of particle production at high beam energies is the near equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter/antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter like antihypernuclei.



rate research

Read More

279 - J. Cleymans , S. Kabana , I. Kraus 2011
Recent results related to the chemical equilibration of hadrons in the final state of p-p and heavy ion collisions are reviewed.
The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential and radial flow velocity for different particle species are obtained. Further, these parameters are studied as a function of the mass of the secondary particles. A mass-dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Further a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters.
A model for exclusive diffractive resonance production in proton-proton collisions at high energies is presented. This model is able to predict double differential distributions with respect to the mass and the transverse momentum of the produced resonance in the mass region $sqrt{M^2}le$5 GeV. The model is based on convoluting the Pomeron distribution in the proton with the Pomeron-Pomeron-meson total cross section. The Pomeron-Pomeron-meson cross section is saturated by direct-channel contributions from the Pomeron as well as from two different $f$ trajectories, accompanied by the isolated f$_0(500)$ resonance dominating the $sqrt{M^{2}} leq $ GeV region. A slowly varying background is taken into account.
A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS we reproduced the energy dependence of the $K^+/pi^+$ and $Lambda/pi^-$ ratios employing an experimental parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-dominated regime; however, the reproduction of the $K^+/pi^+$ and $Lambda/pi^-$ ratios as a function of $sqrt{s}$ is not completely satisfying. We finally propose a new idea for the interpretation of the data, the roll-over scheme, in which the scalar meson field $sigma$ has not reached the thermal equilibrium at freeze-out. The rool-over scheme for the equilibration of the $sigma$-field is based on the inflation mechanism. The non-equilibrium evolution of the scalar field influences the particle production, e.g. $K^+/pi^+$, however, the fixing of the free parameters in this model is still an open issue.
269 - Alejandro Ayala 2009
The spin alignment matrix element rho_{00} for the vector mesons K^{*0} and phi(1020) has been measured in RHIC at central rapidities. These measurements are consistent with the absence of polarization with respect to the reaction plane in mid-central Au + Au collisions whereas, when measured with respect to the production plane in the same reactions and in p + p collisions, a non-vanishing and p_perp-dependent rho_{00} is found. We show that this behavior can be understood in a simple model of vector meson production where the spin of their constituent quarks is oriented during hadronization as the result of Thomas precession.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا