Do you want to publish a course? Click here

Braided Tensor Products and the Covariance of Quantum Noncommutative Free Fields

198   0   0.0 ( 0 )
 Added by Jerzy Lukierski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the free quantum noncommutative fields as described by braided tensor products. The multiplication of such fields is decomposed into three operations, describing the multiplication in the algebra M of functions on noncommutative space-time, the product in the algebra H of deformed field oscillators, and the braiding by factor Psi_{M,H} between algebras M and H. For noncommutativity generated by the twist factor we shall employ the star-product realizations of the algebra M in terms of functions on standard Minkowski space. The covariance of single noncommutative quantum fields under deformed Poincare symmetries is described by the algebraic covariance conditions which are equivalent to the deformation of generalized Heisenberg equations on Poincare group manifold. We shall calculate the covariant braided field commutator, which for free quantum noncommutative fields provides the field quantization condition and is given by standard Pauli-Jordan function. For ilustration of our new scheme we present explicit calculations for the well-known case in the literature of canonically deformed free quantum fields.



rate research

Read More

We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only possible for a light-like version of the commutation relations, if one requires invariance of the tensor product algebra under the coaction of the $kappa$-Poincare group. This necessitates a braided tensor product. We study the representations of this product, and prove that $kappa$-Poincare-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative. We use this construction to define the 2-point Whightman and Pauli--Jordan functions, which turn out to be identical to the undeformed ones. We finally outline how to construct a free scalar $kappa$-Poincare-invariant quantum field theory, and identify some open problems.
We consider the construction of twisted tensor products in the category of C*-algebras equipped with orthogonal filtrations and under certain assumptions on the form of the twist compute the corresponding quantum symmetry group, which turns out to be the generalised Drinfeld double of the quantum symmetry groups of the original filtrations. We show how these results apply to a wide class of crossed products of C*-algebras by actions of discrete groups. We also discuss an example where the hypothesis of our main theorem is not satisfied and the quantum symmetry group is not a generalised Drinfeld double.
Massive and massless potentials play an essential role in the perturbative formulation of particle interactions. Many difficulties arise due to the indefinite metric in gauge theoretic approaches, or the increase with the spin of the UV dimension of massive potentials. All these problems can be evaded in one stroke: modify the potentials by suitable terms that leave unchanged the field strengths, but are not polynomial in the momenta. This feature implies a weaker localization property: the potentials are string-localized. In this setting, several old issues can be solved directly in the physical Hilbert space of the respective particles: We can control the separation of helicities in the massless limit of higher spin fields and conversely we recover massive potentials with 2s+1 degrees of freedom by a smooth deformation of the massless potentials (fattening). We construct stress-energy tensors for massless fields of any helicity (thus evading the Weinberg-Witten theorem). We arrive at a simple understanding of the van Dam-Veltman-Zakharov discontinuity concerning, e.g., the distinction between a massless or a very light graviton. Finally, the use of string-localized fields opens new perspectives for interacting quantum field theories with, e.g., vector bosons or gravitons.
80 - Fedele Lizzi 2018
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometry. This is applied to the standard model of particle interaction, discussing the fermionic and bosonic spectral action. The issues relating to the calculation of the mass of the Higgs are discussed, as well as the role of neutrinos and Wick rotations. Finally, we present the possibility of solving the problem of the Higgs mass by considering a pregeometric grand symmetry.
74 - Victor Lekeu , Yi Zhang 2021
We perform the quantisation of antisymmetric tensor-spinors (fermionic $p$-forms) $psi^alpha_{mu_1 dots mu_p}$ using the Batalin-Vilkovisky field-antifield formalism. Just as for the gravitino ($p=1$), an extra propagating Nielsen-Kallosh ghost appears in quadratic gauges containing a differential operator. The appearance of this `third ghost is described within the BV formalism for arbitrary reducible gauge theories. We then use the resulting spectrum of ghosts and the Atiyah-Singer index theorem to compute gravitational anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا