No Arabic abstract
X-ray and near-infrared ($J$-$H$-$K_{rm s}$) observations of the Galactic black hole binary GX 339--4 in the low/hard state were performed with Suzaku and IRSF in 2009 March. The spectrum in the 0.5--300 keV band is dominated by thermal Comptonization of multicolor disk photons, with a small contribution from a direct disk component, indicating that the inner disk is almost fully covered by hot corona with an electron temperature of $approx$175 keV. The Comptonizing corona has at least two optical depths, $tau approx 1,0.4$. Analysis of the iron-K line profile yields an inner disk radius of $(13.3^{+6.4}_{-6.0}) R_{rm g}$ ($R_{rm g} $ represents the gravitational radius $GM/c^2$), with the best-fit inclination angle of $approx50^circ$. This radius is consistent with that estimated from the continuum fit by assuming the conservation of photon numbers in Comptonization. Our results suggest that the standard disk of GX 339--4 is likely truncated before reaching the innermost stable circular orbit (for a non rotating black hole) in the low/hard state at $sim$1% of the Eddington luminosity. The one-day averaged near-infrared light curves are found to be correlated with hard X-ray flux with $F_{rm Ks} propto F_{rm X}^{0.45}$. The flatter near infrared $ u F_{ u}$ spectrum than the radio one suggests that the optically thin synchrotron radiation from the compact jets dominates the near-infrared flux. Based on a simple analysis, we estimate the magnetic field and size of the jet base to be $5times10^4$ G and $6times 10^8$ cm, respectively. The synchrotron self Compton component is estimated to be approximately 0.4% of the total X-ray flux.
A rapid timing analysis of VLT/ULTRACAM and RXTE observations of the black hole binary GX 339-4 in its 2007 low/hard state is presented. The optical light curves in the r, g and u filters show slow (~20 s) quasi-periodic variability. Upon this is superposed fast flaring activity on times approaching the best time resolution probed (~50 ms) and with maximum strengths of more than twice the local mean. Power spectral analysis over ~0.004-10 Hz is presented, and shows that although the average optical variability amplitude is lower than that in X-rays, the peak variability power emerges at a higher Fourier frequency in the optical. Energetically, we measure a large optical vs. X-ray flux ratio, higher than that seen when the source was fully jet-dominated. Such a large ratio cannot be easily explained with a disc alone. The optical:X-ray cross-spectrum shows a markedly different behaviour above and below ~0.2 Hz. The peak of the coherence function above this threshold is associated with a short optical time lag, also seen as the dominant feature in the time-domain cross-correlation at ~150 ms. The rms energy spectrum of these fast variations is best described by distinct physical components over the optical and X-ray regimes, and also suggests a maximal disc fraction of 20% at ~5000 A. If the constant time delay is due to propagation of fluctuations to (or within) the jet, this is the clearest optical evidence to date of the location of this component. The low-frequency QPO is seen in the optical but not in X-rays. Evidence of reprocessing emerges at the lowest Fourier frequencies, with optical lags at ~10 s and strong coherence in the blue u filter. Simultaneous optical spectroscopy also shows the Bowen fluorescence blend, though its emission location is unclear. But canonical disc reprocessing cannot dominate the optical power easily, nor explain the fast variability. (abridged)
The microquasar GX 339-4 was observed by Suzaku five times, spaced by a few days, during its transition back to the hard state at the end of its 2010-2011 outburst. The 2-10 keV source flux decreases by a factor ~10 between the beginning and the end of the monitoring. Simultaneous radio and OIR observations highlighted the re-ignition of the radio emission just before the beginning of the campaign, the maximum radio emission being reached between the two first Suzaku pointings, while the IR peaked a few weeks latter. A fluorescent iron line is always significantly detected. Fits with a gaussian or Laor profiles give statistically equivalent results. In the case of a Laor profile, fits of the five data sets simultaneously agree with a disk inclination angle of ~20 degrees. The disk inner radius is <10-30 R_g in the first two observations but almost unconstrained in the last three. A soft X-ray excess is also present in these two first observations. Fits with a multicolor disk component give disk inner radii in agreement with those obtained with the iron line fits. The use of a physically more realistic model, including a blurred reflection component and a comptonization continuum, give some hints of the increase of the disk inner radius but the significances are always weak. Interestingly, the addition of warm absorption significantly improves the fit of OBS1 while it is not needed in the other observations. The radio-jet re-ignition occurring between OBS1 and OBS2, these absorption features may indicate the natural evolution from a disk wind and a jet. The comparison with a long 2008 Suzaku observation of GX 339-4 in a persistent faint hard state where a narrow iron line clearly indicates a disk recession, is discussed.
We report multiwavelength observations of the black hole transient GX 339-4 during its outburst decay in 2011 using the data from RXTE, Swift and SMARTS. Based on the X-ray spectral, temporal, and the optical/infrared (OIR) properties, the source evolved from the soft-intermediate to the hard state. Twelve days after the start of the transition towards the hard state, a rebrightening was observed simultaneously in the optical and the infrared bands. Spectral energy distributions (SED) were created from observations at the start, and close to the peak of the rebrightening. The excess OIR emission above the smooth exponential decay yields flat spectral slopes for these SEDs. Assuming that the excess is from a compact jet, we discuss the possible locations of the spectral break that mark the transition from optically thick to optically thin synchrotron components. Only during the rising part of the rebrightening, we detected fluctuations with the binary period of the system. We discuss a scenario that includes irradiation of the disk in the intermediate state, irradiation of the secondary star during OIR rise and jet emission dominating during the peak to explain the entire evolution of the OIR light curve.
We analyze eleven NuSTAR and Swift observations of the black hole X-ray binary GX 339-4 in the hard state, six of which were taken during the end of the 2015 outburst, five during a failed outburst in 2013. These observations cover luminosities from 0.5%-5% of the Eddington luminosity. Implementing the most recent version of the reflection model relxillCp, we perform simultaneous spectral fits on both datasets to track the evolution of the properties in the accretion disk including the inner edge radius, the ionization, and temperature of the thermal emission. We also constrain the photon index and electron temperature of the primary source (the corona). We find the disk becomes more truncated when the luminosity decreases, and observe a maximum truncation radius of $37R_g$. We also explore a self-consistent model under the framework of coronal Comptonization, and find consistent results regarding the disk truncation in the 2015 data, providing a more physical preferred fit for the 2013 observations.
We use simultaneous Swift and RXTE observations of the black hole binary GX 339-4 to measure the inner radius of its accretion disk in the hard state down to 0.4% L_{Edd} via modeling of the thermal disk emission and the relativistically broadened iron line. For the luminosity range covered in this work, our results rule out a significantly truncated disk at 100-1000 R_g as predicted by the advection-dominated accretion flow paradigm. The measurements depend strongly on the assumed emission geometry, with most results providing no clear picture of radius evolution. If the inclination is constrained to roughly 20 degrees, however, the measurements based on the thermal disk emission suggest a mildly receding disk at a luminosity of 0.4% L_{Edd}. The iron abundance varies between roughly 1-2 solar abundances, with the i=20 degrees results indicating a negative correlation with luminosity, though this is likely due to a change in disk illumination geometry.