Do you want to publish a course? Click here

Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation

212   0   0.0 ( 0 )
 Added by Melinda Sweany
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.



rate research

Read More

MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.
A water v{C}erenkov detector project, of megaton scale, to be installed in the Frejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle $theta_{13}$ and the CP-violating phase $delta$.
766 - Xuewu Wang , Ming Zeng , Zhi Zeng 2015
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
A gas electron multiplier (GEM) detector with a gadolinium cathode has been developed to explore its potential application as a neutron detector. It consists of three standard-sized ($10times 10$ cm${}^{2}$) GEM foils and a thin gadolinium plate as the cathode, which is used as a neutron converter. The neutron detection efficiencies were measured for two different cathode setups and for two different drift gaps. The thermal neutron source at the Korea Research Institute of Standards and Science (KRISS) was used to measure the neutron detection efficiency. Based on the neutron flux measured by KRISS, the neutron detection efficiency of our gadolinium GEM detector was $4.630 pm 0.034(stat.) pm 0.279(syst.) %$.
SNO+ is a large-scale liquid scintillator experiment with the primary goal of searching for neutrinoless double beta decay, and is located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector acquired data for two years as a pure water Cherenkov detector, starting in May 2017. During this period, the optical properties of the detector were measured in situ using a deployed light diffusing sphere, with the goal of improving the detector model and the energy response systematic uncertainties. The measured parameters included the water attenuation coefficients, effective attenuation coefficients for the acrylic vessel, and the angular response of the photomultiplier tubes and their surrounding light concentrators, all across different wavelengths. The calibrated detector model was validated using a deployed tagged gamma source, which showed a 0.6% variation in energy scale across the primary target volume.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا