Do you want to publish a course? Click here

Scaling of the Higgs Self-coupling and bounds on the Extra Dimension

338   0   0.0 ( 0 )
 Added by LuXin Liu
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the one-loop evolution equation of the Higgs quartic coupling $lambda$ in the minimal Universal Extra Dimension model, and find that there are certain bounds on the extra dimension due to the singularity and vacuum stability conditions of the Higgs sector. In the range $250GeV sim {R^{- 1}} sim 80TeV$ of the compactification radius, we notice that for a given initial value $lambda ({M_Z})$, there is an upper limit on ${R^{- 1}}$ for a Higgs mass of $183GeV sim {m_H}({M_Z}) sim 187GeV$; where any other compactification scales beyond that have been ruled out for theories where the evolution of $lambda$ does not develop a Landau pole and become divergent in the whole range (that is, from the electroweak scale to the unification scale). Likewise, in the range of the Higgs mass $152GeV sim {m_H}({M_Z}) sim 157GeV$, for an initial value $lambda ({M_Z})$, we are led to a lower limit on ${R^{- 1}}$; any other compactification scales below that will be ruled out for theories where the evolution of $lambda$ does not become negative and destabilize the vacuum between the electroweak scale and the unification scale. For a Higgs mass in the range $157GeV < {m_H}({M_Z}) < 183GeV$, the evolution of $lambda$ is finite and the theory is valid in the whole range (from the electroweak scale to the unification scale) for $250GeV sim {R^{- 1}} sim 80TeV$.



rate research

Read More

A comprehensive, five-dimensional calculation of Higgs-boson production in gluon fusion is performed for both the minimal and the custodially protected Randall-Sundrum (RS) model, with Standard Model fields propagating in the bulk and the scalar sector confined on or near the IR brane. For the first time, an exact expression for the gg->h amplitude in terms of the five-dimensional fermion propagator is derived, which includes the full dependence on the Higgs-boson mass. Various results in the literature are reconciled and shown to correspond to different incarnations of the RS model, in which the Higgs field is either localized on the IR brane or is described in terms of a narrow bulk state. The results in the two scenarios differ in a qualitative way: the gg->h amplitude is suppressed in models where the scalar sector is localized on the IR brane, while it tends to be enhanced in bulk Higgs models. In both cases, effects of higher-dimensional operators contributing to the gg->h amplitude at tree level are shown to be numerically suppressed under reasonable assumptions. There is no smooth cross-over between the two scenarios, since the effective field-theory description breaks down in the transition region. A detailed phenomenological analysis of Higgs production in various RS scenarios is presented, and for each scenario the regions of parameter space already excluded by LHC data are derived.
171 - Marcela Carena 2012
Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg-->h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in terms of a simple function of the fundamental (5D) Yukawa matrices. Given a specific RS model, this will allow one to easily constrain the parameter space, once a Higgs signal has been established. We explain that discrepancies between existing calculations of Higgs production in RS models are related to the non-commutativity of two limits: taking the number of KK states to infinity and removing the regulator on the Higgs-boson profile, which is required in an intermediate step to make the relevant overlap integrals well defined. Even though the one-loop gg-->h amplitude is finite in RS scenarios with a brane-localized Higgs sector, it is important to introduce a consistent ultraviolet regulator in order to obtain the correct result.
We give an exact analytic solution of the strong coupling limit of the integral equation which was recently proposed to describe the universal scaling function of high spin operators in N = 4 gauge theory. The solution agrees with the prediction from string theory, confirms the earlier numerical analysis and provides a basis for developing a systematic perturbation theory around strong coupling.
We investigate the impact of the latest data on Higgs boson branching ratios on the minimal model with a Universal Extra Dimension (mUED). Combining constraints from vacuum stability requirements with these branching ratio measurements we are able to make realistic predictions for the signal strengths in this model. We use these to find a lower bound of 1.3 TeV on the size parameter $R^{-1}$ of the model at 95% confidence level, which is far more stringent than any other reliable bound obtained till now.
The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to non-polynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا