No Arabic abstract
The three-dimensional topological insulator (originally called topological insulators) is the first example in nature of a topologically ordered electronic phase existing in three dimensions that cannot be reduced to multiple copies of quantum-Hall-like states. Their topological order can be realized at room temperatures without magnetic fields and they can be turned into magnets and exotic superconductors leading to world-wide interest and activity in topological insulators. One of the major challenges in going from quantum Hall-like 2D states to 3D topological insulators is to develop new experimental approaches/methods to precisely probe this novel form of topological-order since the standard tools and settings that work for IQH-state also work for QSH states. The method to probe 2D topological-order is exclusively with charge transport, which either measures quantized transverse conductance plateaus in IQH systems or longitudinal conductance in quantum spin Hall (QSH) systems. In a 3D topological insulator, the boundary itself supports a two dimensional electron gas (2DEG) and transport is not (Z$_2$) topologically quantized. In this paper, we review the birth of momentum- and spin-resolved spectroscopy as a new experimental approach and as a directly boundary sensitive method to study and prove topological-order in three-dimensions via the direct measurements of the topological invariants {$ u_o$} that are associated with the Z$_2$ topology of the spin-orbit band structure and opposite parity band
Systems of free fermions are classified by symmetry, space dimensionality, and topological properties described by K-homology. Those systems belonging to different classes are inequivalent. In contrast, we show that by taking a many-body/Fock space viewpoint it becomes possible to establish equivalences of topological insulators and superconductors in terms of duality transformations. These mappings connect topologically inequivalent systems of fermions, jumping across entries in existent classification tables, because of the phenomenon of symmetry transmutation by which a symmetry and its dual partner have identical algebraic properties but very different physical interpretations. To constrain our study to established classification tables, we define and characterize mathematically Gaussian dualities as dualities mapping free fermions to free fermions (and interacting to interacting). By introducing a large, flexible class of Gaussian dualities we show that any insulator is dual to a superconductor, and that fermionic edge modes are dual to Majorana edge modes, that is, the Gaussian dualities of this paper preserve the bulk-boundary correspondence. Transmutation of relevant symmetries, particle number, translation, and time reversal is also investigated in detail. As illustrative examples, we show the duality equivalence of the dimerized Peierls chain and the Majorana chain of Kitaev, and a two-dimensional Kekule-type topological insulator, including graphene as a special instance in coupling space, dual to a p-wave superconductor. Since our analysis extends to interacting fermion systems we also briefly discuss some such applications.
We consider extended Hubbard models with repulsive interactions on a Honeycomb lattice and the transitions from the semi-metal phase at half-filling to Mott insulating phases. In particular, due to the frustrating nature of the second-neighbor repulsive interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spinful fermion models, respectively. We present the mean-field phase diagram and consider the effects of fluctuations within the random phase approximation (RPA). Functional renormalization group analysis also show that these states can be favored over the topologically trivial Mott insulating states.
We study a link between the ground-state topology and the topology of the lattice via the presence of anomalous states at disclinations -- topological lattice defects that violate a rotation symmetry only locally. We first show the existence of anomalous disclination states, such as Majorana zero-modes or helical electronic states, in second-order topological phases by means of Volterra processes. Using the framework of topological crystals to construct $d$-dimensional crystalline topological phases with rotation and translation symmetry, we then identify all contributions to $(d-2)$-dimensional anomalous disclination states from weak and first-order topological phases. We perform this procedure for all Cartan symmetry classes of topological insulators and superconductors in two and three dimensions and determine whether the correspondence between bulk topology, boundary signatures, and disclination anomaly is unique.
We investigate the effects of magnetic and nonmagnetic impurities on the two-dimensional surface states of three-dimensional topological insulators (TIs). Modeling weak and strong TIs using a generic four-band Hamiltonian, which allows for a breaking of inversion and time-reversal symmetries and takes into account random local potentials as well as the Zeeman and orbital effects of external magnetic fields, we compute the local density of states, the single-particle spectral function, and the conductance for a (contacted) slab geometry by numerically exact techniques based on kernel polynomial expansion and Greens function approaches. We show that bulk disorder refills the suface-state Dirac gap induced by a homogeneous magnetic field with states, whereas orbital (Peierls-phase) disorder perserves the gap feature. The former effect is more pronounced in weak TIs than in strong TIs. At moderate randomness, disorder-induced conducting channels appear in the surface layer, promoting diffusive metallicity. Random Zeeman fields rapidly destroy any conducting surface states. Imprinting quantum dots on a TIs surface, we demonstrate that carrier transport can be easily tuned by varying the gate voltage, even to the point where quasi-bound dot states may appear.
Topological insulators and superconductors are characterized by their gapless boundary modes. In this paper, we develop a recursive approach to the boundary Green function which encodes this nontrivial boundary physics. Our approach describes the various topologically trivial and nontrivial phases as fixed points of a recursion and provides direct access to the phase diagram, the localization properties of the edge modes, as well as topological indices. We illustrate our approach in the context of various familiar models such as the Su-Schrieffer-Heeger model, the Kitaev chain, and a model for a Chern insulator. We also show that the method provides an intuitive approach to understand recently introduced topological phases which exhibit gapless corner states.