No Arabic abstract
We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas, and that bars or tens of bars of primordial H2-He mixtures can maintain surface temperatures above the freezing point of water well beyond the classical habitable zone defined for CO2 greenhouse atmospheres. Using a 1-D radiative-convective model we find that 40 bars of pure H2 on a 3 Earth-mass planet can maintain a surface temperature of 280K out to 1.5AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H2, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H2-He are possible, and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390L could have retained a H2-He atmosphere and be habitable at ~2.6 AU from its host M star.
We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 M$_{E}$ and 5 M$_{E}$ around circumbinary stars of various spectral type combinations. Specifically, we consider binary systems with host spectral types F-F, F-G, F-K, F-M, G-G, G-K, G-M, K-K, K-M and M-M. Scaling the background N2 atmospheric pressure with the radius of the planet, we find that the inner edge of the HZ moves inwards towards the star for 5ME compared to 0.1ME planets for all spectral types. This is because the water-vapor column depth is smaller for larger planets and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. The outer edge of the HZ changes little due to competing effects of the albedo and greenhouse effect. While these results are broadly consistent with the trend of single star HZ results for different mass planets, there are significant differences between single star and binary star systems for the inner edge of the HZ. Interesting combinations of stellar pairs from our 1-D model results can be used to explore for in-depth climate studies with 3-D climate models. We identify a common HZ stellar flux domain for all circumbinary spectral types
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, Alpha Centauri. Based on 75-80% of the best quality images from 100 hours of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of Alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around Alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres (refs 3-6). Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones (refs 6-8). An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures (ref 9). However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere (refs 10,11). Here, we report observations for the four planets within or near the systems habitable zone, the circumstellar region where liquid water could exist on a planetary surface (refs 12-14). These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8, 6 and 4 sigma, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation (refs 15,16), these observations further support their terrestrial and potentially habitable nature.
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is located within the habitable zone (HZ) of the system. In this work, we investigated the ability to form and house an Earth-sized planet within its HZ. First, we computed the limits of its HZ and performed numerical stability tests within that region. We found that HZ has three sub-regions that show stability, one internal, one co-orbital, and external to the host planet Kepler-1647b. Within the limits of these three regions, we performed numerical simulations of planetary formation. In the regions inner and outer to the planet, we used two different density profiles to explore different conditions of formation. In the co-orbital region, we used eight different values of total disc mass. We showed that many resonances are located within regions causing much of the disc material to be ejected before a planet is formed. Thus, the system might have two asteroid belts with Kirkwood gaps, similar to the Solar Systems main belt of asteroids. The co-orbital region proved to be extremely sensitive, not allowing the planet formation, but showing that this binary system has the capacity to have Trojan bodies. Finally, we looked for regions of stability for an Earth-sized moon. We found that there is stability for a moon with this mass up to 0.4 Hills radius from the host planet.