Do you want to publish a course? Click here

Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores

158   0   0.0 ( 0 )
 Added by Marco Padovani
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-energy cosmic rays are the dominant source of ionization for molecular cloud cores. The ionization fraction, in turn, controls the coupling of the magnetic field to the gas and hence the dynamical evolution of the cores. The purpose of this work is to compute the attenuation of the cosmic-ray flux rate in a cloud core taking into account magnetic focusing, magnetic mirroring, and all relevant energy loss processes. We adopt a standard cloud model characterized by a mass-to-flux ratio supercritical by a factor of about 2 to describe the density and magnetic field distribution of a low-mass starless core, and we follow the propagation of cosmic rays through the core along flux tubes enclosing different amount of mass. We then extend our analysis to cores with different mass-to-flux ratios. We find that mirroring always dominates over focusing, implying a reduction of the cosmic-ray ionization rate by a factor of about 2-3 over most of a solar-mass core with respect to the value in the intercloud medium outside the core. For flux tubes enclosing larger masses the reduction factor is smaller, since the field becomes increasingly uniform at larger radii and lower densities. We also find that the cosmic-ray ionization rate is further reduced in clouds with stronger magnetic field, e.g. by a factor of about 4 for a marginally critical cloud. The magnetic field threading molecular cloud cores affects the penetration of low-energy cosmic rays and reduces the ionization rate by a factor 3-4 depending on the position inside the core and the magnetization of the core.



rate research

Read More

128 - M. Juvela 2011
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and the coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces the physical conditions in the core centre.
Cosmic rays pervade the Galaxy and are thought to be accelerated in supernova shocks. The interaction of cosmic rays with dense interstellar matter has two important effects: 1) high energy (>1 GeV) protons produce {gamma}-rays by {pi}0-meson decay; 2) low energy (< 1 GeV) cosmic rays (protons and electrons) ionize the gas. We present here new observations towards a molecular cloud close to the W51C supernova remnant and associated with a recently discovered TeV {gamma}-ray source. Our observations show that the cloud ionization degree is highly enhanced, implying a cosmic ray ionization rate ~ 10-15 s-1, i.e. 100 times larger than the standard value in molecular clouds. This is consistent with the idea that the cloud is irradiated by an enhanced flux of freshly accelerated low-energy cosmic rays. In addition, the observed high cosmic ray ionization rate leads to an instability in the chemistry of the cloud, which keeps the electron fraction high, ~ 10-5, in a large fraction (Av geq 6mag) of the cloud and low, ~ 10-7, in the interior. The two states have been predicted in the literature as high- and low-ionization phases (HIP and LIP). This is the observational evidence of their simultaneous presence in a cloud.
The collapse of slowly rotating molecular cloud cores threaded by magnetic fields is investigated by high-resolution numerical simulation. Outflow formation in the collapsing cloud cores is also followed. In the models examined, the cloud core and parent cloud rotate rigidly and are initially threaded by a uniform magnetic field. The simulations show that the cloud core collapses along the magnetic field lines. The magnetic field in the dense region of the cloud core rotates faster than that of the parent cloud as a consequence of spin-up of the central region during the collapse. The cloud core exhibits significant precession of the rotation axis, magnetic field, and disk orientation, with precession highest in the models with low initial field strength ($lesssim 20 mu {rm G}$). Precession in models with initial fields of $sim 40 mu {rm G}$ is suppressed by strong magnetic braking. Magnetic braking transfers angular momentum form the central region and acts more strongly on the component of angular momentum oriented perpendicular to the magnetic field. After the formation of an adiabatic core, outflow is ejected along the local magnetic field lines. Strong magnetic braking associated with the outflow causes the direction of angular momentum to converge with that of the local magnetic field, resulting in the convergence of the local magnetic field, angular momentum, outflow, and disk orientation by the outflow formation phase. The magnetic field of a young star is inclined at an angle of no more than $30^circ$ from that of the parent cloud at initial field strengths of $sim 20 mu {rm G}$, while at an initial field strength of $sim 40 mu {rm G}$, the magnetic field of the young star is well aligned with that of the parent cloud.
We estimate the polarized thermal dust emission from MHD simulations of protostellar collapse and outflow formation in order to investigate alignment of outflows with magnetic fields. The polarization maps indicate that alignment of an outflow with the magnetic field depends on the field strength inside the cloud core; the direction of the outflow, projected on the plane of the sky, is aligned preferentially with the mean polarization vector for a cloud core with a magnetic field strength of 80 microgauss, while it does not tend to be aligned for 50 microgauss as long as the 1000 AU scale is considered. The direction of the magnetic field at the cloud center is probed by the direction of the outflow. In addition, the magnetic field at the cloud center can be revealed by ALMA even when the source is embedded deeply in the envelope. The Chandrasekhar-Fermi formula is examined using the polarization maps, indicating that the field strength predicted by the formula should be corrected by a factor of 0.24 - 0.44. The correction factor has a tendency to be lower for a cloud core with a weaker magnetic field.
The ratio of mass and magnetic flux determines the relative importance of magnetic and gravitational forces in the evolution of molecular clouds and their cores. Its measurement is thus central in discriminating between different theories of core formation and evolution. Here we discuss the effect of chemical depletion on measurements of the mass-to-flux ratio using the same molecule (OH) both for Zeeman measurements of the magnetic field and the determination of the mass of the region. The uncertainties entering through the OH abundance in determining separately the magnetic field and the mass of a region have been recognized in the literature. It has been proposed however that, when comparing two regions of the same cloud, the abundance will in both cases be the same. We show that this assumption is invalid. We demonstrate that when comparing regions with different densities, the effect of OH depletion in measuring changes of the mass-to-flux ratio between different parts of the same cloud can even reverse the direction of the underlying trends (for example, the mass-to-flux ratio may appear to decrease as we move to higher density regions). The systematic errors enter primarily through the inadequate estimation of the mass of the region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا