Do you want to publish a course? Click here

Square root voting system, optimal threshold and pi

130   0   0.0 ( 0 )
 Added by Karol Zyczkowski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The problem of designing an optimal weighted voting system for the two-tier voting, applicable in the case of the Council of Ministers of the European Union (EU), is investigated. Various arguments in favour of the square root voting system, where the voting weights of member states are proportional to the square root of their population are discussed and a link between this solution and the random walk in the one-dimensional lattice is established. It is known that the voting power of every member state is approximately equal to its voting weight, if the threshold q for the qualified majority in the voting body is optimally chosen. We analyze the square root voting system for a generic union of M states and derive in this case an explicit approximate formula for the level of the optimal threshold: q simeq 1/2+1/sqrt{{pi} M}. The prefactor 1/sqrt{{pi}} appears here as a result of averaging over the ensemble of unions with random populations.



rate research

Read More

472 - Jan A. Bergstra , I. Bethke 2009
Let Q_0 denote the rational numbers expanded to a meadow by totalizing inversion such that 0^{-1}=0. Q_0 can be expanded by a total sign function s that extracts the sign of a rational number. In this paper we discuss an extension Q_0(s ,sqrt) of the signed rationals in which every number has a unique square root.
Recent years have witnessed a controversy over Heisenbergs famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss two approaches to adapting the classic notion of root-mean-square error to quantum measurements. One is based on the concept of noise operator; its natural operational content is that of a mean deviation of the values of two observables measured jointly, and thus its applicability is limited to cases where such joint measurements are available. The second error measure quantifies the differences between two probability distributions obtained in separate runs of measurements and is of unrestricted applicability. We show that there are no nontrivial unconditional joint-measurement bounds for {em state-dependent} errors in the conceptual framework discussed here, while Heisenberg-type measurement uncertainty relations for {em state-independent} errors have been proven.
92 - Mou Yan , Xueqin Huang , Li Luo 2020
Square-root topological states are new topological phases, whose topological property is inherited from the square of the Hamiltonian. We realize the first-order and second-order square-root topological insulators in phononic crystals, by putting additional cavities on connecting tubes in the acoustic Su-Schrieffer-Heeger model and the honeycomb lattice, respectively. Because of the square-root procedure, the bulk gap of the squared Hamiltonian is doubled. In both two bulk gaps, the square-root topological insulators possess multiple localized modes, i.e., the end and corner states, which are evidently confirmed by our calculations and experimental observations. We further propose a second-order square-root topological semimetal by stacking the decorated honeycomb lattice to three dimensions.
For the analysis of molecular processes, the estimation of time-scales, i.e., transition rates, is very important. Estimating the transition rates between molecular conformations is -- from a mathematical point of view -- an invariant subspace projection problem. A certain infinitesimal generator acting on function space is projected to a low-dimensional rate matrix. This projection can be performed in two steps. First, the infinitesimal generator is discretized, then the invariant subspace is approxi-mated and used for the subspace projection. In our approach, the discretization will be based on a Voronoi tessellation of the conformational space. We will show that the discretized infinitesimal generator can simply be approximated by the geometric average of the Boltzmann weights of the Voronoi cells. Thus, there is a direct correla-tion between the potential energy surface of molecular structures and the transition rates of conformational changes. We present results for a 2d-diffusion process and Alanine dipeptide.
We introduce a new unconditionally solvable level-crossing two-state model given by a constant-amplitude optical field configuration for which the detuning is an inverse-square-root function of time. This is a member of one of the five families of bi-confluent Heun models. We prove that this is the only non-classical exactly solvable field configuration among the bi-confluent Heun classes, solvable in terms of finite sums of the Hermite functions. The general solution of the two-state problem for this model is written in terms of four Hermite functions of a shifted and scaled argument (each of the two fundamental solutions presents an irreducible combination of two Hermite functions). We present the general solution, rewrite it in terms of more familiar physical quantities and analyze the time dynamics of a quantum system subject to excitation by a laser field of this configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا