Do you want to publish a course? Click here

Quantum root-mean-square error and measurement uncertainty relations

136   0   0.0 ( 0 )
 Added by Paul Busch
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have witnessed a controversy over Heisenbergs famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss two approaches to adapting the classic notion of root-mean-square error to quantum measurements. One is based on the concept of noise operator; its natural operational content is that of a mean deviation of the values of two observables measured jointly, and thus its applicability is limited to cases where such joint measurements are available. The second error measure quantifies the differences between two probability distributions obtained in separate runs of measurements and is of unrestricted applicability. We show that there are no nontrivial unconditional joint-measurement bounds for {em state-dependent} errors in the conceptual framework discussed here, while Heisenberg-type measurement uncertainty relations for {em state-independent} errors have been proven.



rate research

Read More

Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
One of the major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanish only for accurate measurements). A noise-operator based error measure has been commonly used for this purpose, but it has turned out incomplete. Recently, Ozawa proposed a new definition for a noise-operator based error measure to be both sound and complete. Here, we present a neutron optical demonstration for the completeness of the new error measure for both projective (or sharp) as well as generalized (or unsharp) measurements.
Bures distance holds a special place among various distance measures due to its several distinguished features and finds applications in diverse problems in quantum information theory. It is related to fidelity and, among other things, it serves as a bona fide measure for quantifying the separability of quantum states. In this work, we calculate exact analytical results for the mean root fidelity and mean square Bures distance between a fixed density matrix and a random density matrix, and also between two random density matrices. In the course of derivation, we also obtain spectral density for product of above pairs of density matrices. We corroborate our analytical results using Monte Carlo simulations. Moreover, we compare these results with the mean square Bures distance between reduced density matrices generated using coupled kicked tops and find very good agreement.
We introduce a new unconditionally solvable level-crossing two-state model given by a constant-amplitude optical field configuration for which the detuning is an inverse-square-root function of time. This is a member of one of the five families of bi-confluent Heun models. We prove that this is the only non-classical exactly solvable field configuration among the bi-confluent Heun classes, solvable in terms of finite sums of the Hermite functions. The general solution of the two-state problem for this model is written in terms of four Hermite functions of a shifted and scaled argument (each of the two fundamental solutions presents an irreducible combination of two Hermite functions). We present the general solution, rewrite it in terms of more familiar physical quantities and analyze the time dynamics of a quantum system subject to excitation by a laser field of this configuration.
The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurements, and comparing the values of unmeasured observables is not necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take a different approach and define error and disturbance in an operational manner. In particular, we formulate both in terms of the probability that one can successfully distinguish the actual measurement device from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and momentum. Our relations may be directly applied in information processing settings, for example to infer that devices which can faithfully transmit information regarding one observable do not leak any information about conjugate observables to the environment. We also show that Englerts wave-particle duality relation [PRL 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا