Do you want to publish a course? Click here

Array independent MIMO channel models with analytical characteristics

49   0   0.0 ( 0 )
 Added by Yuan Yao
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

The conventional analytical channel models for multiple-input multiple-output (MIMO) wireless radio channels are array dependent. In this paper, we present several array independent MIMO channel models that inherit the essence of analytical models. The key idea is to decompose the physical scattering channel into two parts using the manifold decomposition technique: one is the wavefield independent sampling matrices depending on the antenna arrays only; the other is the array independent physical channel that can be individually modeled in an analytical manner. Based on the framework, we firstly extend the conventional virtual channel representation (VCR), which is restricted to uniform linear arrays (ULAs) so far, to a general version applicable to arbitrary array configurations. Then, we present two array independent stochastic MIMO channel models based on the proposed new VCR as well as the Weichselberger model. These two models are good at angular power spectrum (APS) estimation and capacity prediction, respectively. Finally, the impact of array characteristics on channel capacity is separately investigated by studying the condition number of the array steering matrix at fixed angles, and the results agree well with existing conclusions. Numerical results are presented for model validation and comparison.

rate research

Read More

Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task, as the size of beamspace channel is large while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mmWave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mmWave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of mmWave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy, even in the low SNR region as the structural characteristics of beamspace channel can be exploited.
The problem of sending a secret message over the Gaussian multiple-input multiple-output (MIMO) wiretap channel is studied. While the capacity of this channel is known, it is not clear how to construct optimal coding schemes that achieve this capacity. In this work, we use linear operations along with successive interference cancellation to attain effective parallel single-antenna wiretap channels. By using independent scalar Gaussian wiretap codebooks over the resulting parallel channels, the capacity of the MIMO wiretap channel is achieved. The derivation of the schemes is based upon joint triangularization of the channel matrices. We find that the same technique can be used to re-derive capacity expressions for the MIMO wiretap channel in a way that is simple and closely connected to a transmission scheme. This technique allows to extend the previously proven strong security for scalar Gaussian channels to the MIMO case. We further consider the problem of transmitting confidential messages over a two-user broadcast MIMO channel. For that problem, we find that derivation of both the capacity and a transmission scheme is a direct corollary of the proposed analysis for the MIMO wiretap channel.
In the scalar dirty multiple-access channel, in addition to Gaussian noise, two additive interference signals are present, each known non-causally to a single transmitter. It was shown by Philosof et al. that for strong interferences, an i.i.d. ensemble of codes does not achieve the capacity region. Rather, a structured-codes approach was presented, that was shown to be optimal in the limit of high signal-to-noise ratios, where the sum-capacity is dictated by the minimal (bottleneck) channel gain. In this paper, we consider the multiple-input multiple-output (MIMO) variant of this setting. In order to incorporate structured codes in this case, one can utilize matrix decompositions that transform the channel into effective parallel scalar dirty multiple-access channels. This approach however suffers from a bottleneck effect for each effective scalar channel and therefore the achievable rates strongly depend on the chosen decomposition. It is shown that a recently proposed decomposition, where the diagonals of the effective channel matrices are equal up to a scaling factor, is optimal at high signal-to-noise ratios, under an equal rank assumption. This approach is then extended to any number of transmitters. Finally, an application to physical-layer network coding for the MIMO two-way relay channel is presented.
We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with pilot contamination. To take into account the channel aging effect due to user mobility, we first compute a channel estimate. We use it to derive novel closed-form expressions for the uplink spectral efficiency (SE) of CF massive MIMO systems with large-scale fading decoding and matched-filter receiver cooperation. The performance of a small-cell system is derived for comparison. It is found that CF massive MIMO systems achieve higher 95%-likely uplink SE in both low- and high-mobility conditions, and CF massive MIMO is more robust to channel aging. Fractional power control (FPC) is considered to compensate to limit the inter-user interference. The results show that, compared with full power transmission, the benefits of FPC are gradually weakened as the channel aging grows stronger.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا