Do you want to publish a course? Click here

A Herschel resolved far-infrared dust ring around HD 207129

116   0   0.0 ( 0 )
 Added by Jonathan Marshall
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location.vThe Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB). We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using {alpha} Bootis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 {mu}m. We have resolved the dust-producing planetesimal belt of a debris disc at 100 {mu}m for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES.



rate research

Read More

We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at $lambda$1.3 mm and the CSO at $lambda$350 $mu$m. Both images show that the dust emission extends over an $sim$10arcsec diameter region. The high resolution (3arcsec) CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by $sim$140 degrees in position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of $sim$45-75 AU.
We report the detection of a significant excess in the surface density of far-infrared sources from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) within ~1 Mpc of the centres of 66 optically-selected clusters of galaxies in the SDSS with <z>~0.25. From the analysis of the multiwavelength properties of their counterparts we conclude that the far-infrared emission is associated with dust-obscured star formation and/or active galactic nuclei within galaxies in the clusters themselves. The excess reaches a maximum at a radius of ~0.8 Mpc, where we find 1.0pm0.3 S_250um>34 mJy sources on average per cluster above what would be expected for random field locations. If the far-infrared emission is dominated by star formation (as opposed to AGN) then this corresponds to an average star formation rate of ~7 M_sun/yr per cluster in sources with L_IR>5d10 L_sun. Although lensed sources make a negligible contribution to the excess signal, a fraction of the sources around the clusters could be gravitationally lensed, and we have identified a sample of potential cases of cluster-lensed Herschel sources that could be targeted in follow-up studies.
Photometry of the A0 V main-sequence star HD 106797 with AKARI and Gemini/T-ReCS is used to detect excess emission over the expected stellar photospheric emission between 10 and 20 micron, which is best attributed to hot circumstellar debris dust surrounding the star. The temperature of the debris dust is derived as Td ~ 190 K by assuming that the excess emission is approximated by a single temperature blackbody. The derived temperature suggests that the inner radius of the debris disk is ~ 14 AU. The fractional luminosity of the debris disk is 1000 times brighter than that of our own zodiacal cloud. The existence of such a large amount of hot dust around HD 106797 cannot be accounted for by a simple model of the steady state evolution of a debris disk due to collisions, and it is likely that transient events play a significant role. Our data also show a narrow spectral feature between 11 and 12 micron attributable to crystalline silicates, suggesting that dust heating has occurred during the formation and evolution of the debris disk of HD 106797.
The Herbig Ae star HD 169142 is known to have a gaseous disk with a large inner hole, and also a photometrically variable inner dust component in the sub-au region. Following up our previous analysis, we further studied the temporal evolution of inner dust around HD 169142, which may provide information on the evolution from late-stage protoplanetary disks to debris disks. We used near-infrared interferometric observations obtained with VLTI/PIONIER to constrain the dust distribution at three epochs spanning six years. We also studied the photometric variability of HD 169142 using our optical-infrared observations and archival data. Our results indicate that a dust ring at ~0.3 au formed at some time between 2013 and 2018, and then faded (but did not completely disappear) by 2019. The short-term variability resembles that observed in extreme debris disks, and is likely related to short-lived dust of secondary origin, though variable shadowing from the inner ring could be an alternative interpretation. If confirmed, this is the first direct detection of secondary dust production inside a protoplanetary disk.
Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly-used gas mass tracer, CO. We aim to examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on the HD FIR emission and its sensitivity to the vertical structure. Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and models were run for a range of disk masses and vertical structures. The HD J=1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of ~0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of 2 for low mass disks (M$_{rm disk} < 10^{-3}$ M$_odot$). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of ~3 for all disk masses. For TW Hya, using the radial and vertical structure from Kama et al. 2016b the observations constrain the gas mass to $6cdot10^{-3}$ M$_odot$ < M$_{rm disk} < 9cdot10^{-3}$ M$_odot$. Future observations require a 5$sigma$ sensitivity of $1.8cdot10^{-20}$ W m$^{-2}$ ($2.5cdot10^{-20}$ W m$^{-2}$) and a spectral resolving power R > 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above $10^{-5}$ M$_odot$ with a line-to-continuum ratio > 0.01. These results show that HD can be used as an independent gas mass tracer with a relatively low uncertainty and should be considered as an important science goal for future FIR missions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا