Do you want to publish a course? Click here

H.E.S.S. observations of the globular clusters NGC 6388 and M 15 and search for a Dark Matter signal

237   0   0.0 ( 0 )
 Added by Moulin Emmanuel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the globular clusters NGC 6388 and M 15 were carried out by the H.E.S.S. array of Cherenkov telescopes for a live time of 27.2 and 15.2 hours respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M 15. In the primordial formation scenario, globular clusters are formed in a dark matter halo and dark matter could still be present in the baryon-dominated environment of globular clusters. This opens the possibility of observing a dark matter self-annihilation signal. The dark matter content of the globular clusters NGC 6388 and M 15 is modelled taking into account the astrophysical processes that can be expected to influence the dark matter distribution during the evolution of the globular cluster: the adiabatic contraction of dark matter by baryons, the adiabatic growth of a black hole in the dark matter halo and the kinetic heating of dark matter by stars. 95% confidence level exclusion limits on the dark matter particle velocity-weighted annihilation cross section are derived for these dark matter haloes. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10-25 cm3 s-1 level and a few 10-24 cm3 s-1 for NGC 6388 and M 15 respectively.



rate research

Read More

A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White (NFW) and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section < sigma v> as a function of the DM particle mass. These are among the best reported so far for this energy range. In particular, for the DM particle mass of ~1 TeV, values for <sigma v> above 3 * 10^(-25) cm^3 s^(-1) are excluded for the Einasto density profile. The limits derived here differ much less for the chosen density profile parametrizations, as opposed to limits from gamma-ray observations of dwarf galaxies or the very center of the Milky Way, where the discrepancy is significantly larger.
Observations of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy were carried out with the H.E.S.S. array of four imaging air Cherenkov telescopes in June 2006. A total of 11 hours of high quality data are available after data selection. There is no evidence for a very high energy gamma-ray signal above the energy threshold at the target position. A 95% C.L. flux limit of 3.6 x 10-12 cm-2s-1 above 250 GeV has been derived. Constraints on the velocity-weighted cross section <sigma v> are calculated in the framework of Dark Matter particle annihilation using realistic models for the Dark Matter halo profile of Sagittarius dwarf galaxy. Two different models have been investigated encompassing a large class of halo types. A 95% C.L. exclusion limit on <sigma v> of the order of 2 x 10-25 cm3s-1 is obtained for a core profile in the 100 GeV - 1 TeV neutralino mass range.
138 - A. Bellini 2013
NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters which share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use HSTs WFPC2, ACS, and WFC3 images and present a broad multicolor study of their stellar content, covering all main evolutionary branches. The color-magnitude diagrams (CMDs) give compelling evidence that both clusters host at least two stellar populations, which manifest themselves in different ways. NGC 6388 has a broadened main sequence (MS), a split sub-giant branch (SGB), and a split red giant branch (RGB) that becomes evident above the HB in our data set; its red HB is also split into two branches. NGC 6441 has a split MS, but only an indication of two SGB populations, while the RGB clearly splits in two from the SGB level upward, and no red HB structure. The multicolor analysis of the CMDs confirms that the He difference between the two main stellar populations in the two clusters must be similar. This is observationally supported by the HB morphology, but also confirmed by the color distribution of the stars in the MS optical band CMDs. However, a MS split becomes evident in NGC 6441 using UV colors, but not in NGC 6388, indicating that the chemical patterns of the different populations are different in the two clusters, with C, N, O abundance differences likely playing a major role. We also analyze the radial distribution of the two populations.
67 - P. F. Zhang , Y. L. Xin , L. Fu 2016
In the third Fermi catalogue (3FGL) there are sixteen gamma-ray globular clusters. After analyzing the recent released Pass 8 data of Fermi Large Area Telescope (LAT), we report the discovery of significant gamma-ray emission from M 15 and NGC 6397, confirm that NGC 5904 is a gamma-ray emitter and find evidence of gamma-ray emission from NGC 6218 and NGC 6139. Inter- estingly, in the globular clusters M 15, NGC 6397 and NGC 5904, millisecond pulsars (MSPs) have been found in radio or X-rays, which are strongly in support of the MSP origin of the gamma-ray emission. However, due to the relative low luminosity of the gamma-ray emission we do not find any evidence for the gamma-ray pulsation or flux variability of these sources.
Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of ~3.9x10-24 cm^3 s-1 at a 95% confidence level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا