The transient-field technique has been used in both conventional kinematics and inverse kinematics to measure the g factors of the 2+ states in the stable even isotopes of Ru, Pd and Cd. The statistical precision of the g(2+) values has been significantly improved, allowing a critical comparison with the tidal-wave version of the cranking model recently proposed for transitional nuclei in this region.
The even cadmium isotopes near the neutron midshell have long been considered good examples of vibrational nuclei. However, the vibrational nature of these nuclei has been questioned based on E2 transition rates that are not consistent with vibrational excitations. In the neighbouring odd-mass nuclei, the g factors of the low-excitation collective states have been shown to be more consistent with a deformed rotational core than a vibrational core. Beyond the comparison of vibrational versus rotational models, recent advances in computational power have made shell-model calculations feasible for Cd isotopes, which may give insights into the emergence and nature of collectivity in the Cd isotopes. Collective excitations in the A ~ 100 region were studied through magnetic moments and electromagnetic transitions in 111Cd. The spectroscopy of 111Cd has been studied following Coulomb excitation. Angular correlation measurements, transient-field g-factor measurements and lifetime measurements by the Doppler-broadened line shape method were performed. The structure of the nucleus was explored in relation to particle-vibration versus particle-rotor interpretations. Large-scale shell-model calculations were performed with the SR88MHJM Hamiltonian. Excited-state g factors have been measured, spin assignments examined and lifetimes determined. Attention was given to the reported $5/2^{+}$ 753-keV and $3/2^{+}$ 755-keV states. The $3/2^{+}$ 755-keV level was not observed; evidence is presented that the reported $3/2^+$ state was a misidentification of the $5/2^{+}$ 753-keV state. It is shown that the g factors and level structure of 111Cd are not readily explained by the particle-vibration model. A particle-rotor approach has both successes and limitations. The shell-model approach successfully reproduces much of the known low-excitation structure in 111Cd.
We have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d,p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest USDB or USDA interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of two using either the GXPF1A or the XT interaction.
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for $^{6,7}$Li + $^{209}$Bi are analyzed in the framework of the DPP approach.
Why are the tin isotopes soft? has remained, for the past decade, an open problem in nuclear structure physics: models which reproduce the isoscalar giant monopole resonance (ISGMR) in the doubly-closed shell nuclei, $^{90}$Zr and $^{208}$Pb, overestimate the ISGMR energies of the open-shell tin and cadmium nuclei, by as much as 1 MeV. In an effort to shed some light onto this problem, we present results of detailed studies of the ISGMR in the molybdenum nuclei, with the goal of elucidating where--and how--the softness manifests itself between $^{90}$Zr and the cadmium and tin isotopes. The experiment was conducted using the $^{94,96,98,100}$Mo($alpha,alpha^prime$) reaction at $E_alpha = 386$ MeV. A comparison of the results with relativistic, self-consistent Random-Phase Approximation calculations indicates that the ISGMR response begins to show softness in the molybdenum isotopes beginning with $A=92$.
The evolution of electromagnetic transitions along isotope chains is of particular importance for the nuclear structure and dynamics, as well as for the r-process nucleosynthesis. Recent measurement of inelastic proton scattering on even-even $^{112-124}$Sn isotopes provides a novel insight into the isotopic dependence of E1 and M1 strength distributions. We investigate M1 transitions in even-even $^{100-140}$Sn isotopes from a theoretical perspective, based on relativistic nuclear energy density functional. The M1 transition strength distribution is characterized by an interplay between single and double-peak structures, that can be understood from the evolution of single-particle states, their occupations governed by the pairing correlations, and two-quasiparticle transitions involved. It is shown that discrepancy between model calculations and experiment on B(M1) transition strength is considerably reduced than previously known, and the quenching of the g-factors for the free nucleons needed to reproduce the experimental data on M1 transition strength amounts $g_{eff}/g_{free}$=0.80-0.93. Since some of the B(M1) strength above the neutron threshold may be missing in the inelastic proton scattering measurement, further experimental studies are required to confirm if only small modifications of the bare g-factors are actually needed when applied in finite nuclei.
S.K. Chamoli
,A.E. Stuchbery
,S. Frauendorf
.
(2011)
.
"Measured g factors and the tidal-wave description of transitional nuclei near A = 100"
.
Andrew Stuchbery
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا