Do you want to publish a course? Click here

Survey of excited state neutron spectroscopic factors for Z=8-28 nuclei

170   0   0.0 ( 0 )
 Added by Jenny Lee
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d,p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest USDB or USDA interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of two using either the GXPF1A or the XT interaction.



rate research

Read More

Spectroscopic information has been extracted on the hole-states of $^{55}$Ni, the least known of the quartet of nuclei ($^{55}$Ni, $^{57}$Ni, $^{55}$Co and $^{57}$Co), one neutron away from $^{56}$Ni, the N=Z=28 double magic nucleus. Using the $^{1}$H($^{56}$Ni,d)$^{55}$Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f$_{7/2}$, p$_{3/2}$ and the s$_{1/2}$ hole-states of $^{55}$Ni. This new data provides a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. State of the art calculations have been performed to describe the excitation energies and spectroscopic factors of the s$_{1/2}$ hole-state below Fermi energy.
The even cadmium isotopes near the neutron midshell have long been considered good examples of vibrational nuclei. However, the vibrational nature of these nuclei has been questioned based on E2 transition rates that are not consistent with vibrational excitations. In the neighbouring odd-mass nuclei, the g factors of the low-excitation collective states have been shown to be more consistent with a deformed rotational core than a vibrational core. Beyond the comparison of vibrational versus rotational models, recent advances in computational power have made shell-model calculations feasible for Cd isotopes, which may give insights into the emergence and nature of collectivity in the Cd isotopes. Collective excitations in the A ~ 100 region were studied through magnetic moments and electromagnetic transitions in 111Cd. The spectroscopy of 111Cd has been studied following Coulomb excitation. Angular correlation measurements, transient-field g-factor measurements and lifetime measurements by the Doppler-broadened line shape method were performed. The structure of the nucleus was explored in relation to particle-vibration versus particle-rotor interpretations. Large-scale shell-model calculations were performed with the SR88MHJM Hamiltonian. Excited-state g factors have been measured, spin assignments examined and lifetimes determined. Attention was given to the reported $5/2^{+}$ 753-keV and $3/2^{+}$ 755-keV states. The $3/2^{+}$ 755-keV level was not observed; evidence is presented that the reported $3/2^+$ state was a misidentification of the $5/2^{+}$ 753-keV state. It is shown that the g factors and level structure of 111Cd are not readily explained by the particle-vibration model. A particle-rotor approach has both successes and limitations. The shell-model approach successfully reproduces much of the known low-excitation structure in 111Cd.
171 - Zs. Vajta , M. Stanoiu , D. Sohler 2014
The structure of the nucleus 25F was investigated through in-beam {gamma}-ray spectroscopy of the fragmentation of 26Ne and 27,28Na ion beams. Based on the particle-{gamma} and particle-{gamma}{gamma} coincidence data, a level scheme was constructed and compared with shell model and coupled-cluster calculations. Some of the observed states were interpreted as quasi single-particle states built on top of the closed-shell nucleus 24O, while the others were described as states arising from coupling of a single proton to the 2+ core excitation of 24O.
The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
190 - O. Sorlin 2017
It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients for modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا