Do you want to publish a course? Click here

Evolution of Galaxy Stellar Mass Functions, Mass Densities, and Mass to Light Ratios from z 7 to z 4

127   0   0.0 ( 0 )
 Added by Valentino Gonzalez
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive stellar masses from SED fitting to rest-frame optical and UV fluxes for 401 star-forming galaxies at z 4, 5, and 6 from Hubble-WFC3/IR observations of the ERS combined with the deep GOODS-S Spitzer/IRAC data (and include a previously-published z 7 sample). A mass-luminosity relation with strongly luminosity-dependent M/Luv ratios is found for the largest sample (299 galaxies) at z 4. The relation M propto L_{UV,1500}^(1.7+/-0.2) has a well-determined intrinsic sample variance of 0.5 dex. This relation is also consistent with the more limited samples at z 5-7. This z 4 mass-luminosity relation, and the well-established faint UV luminosity functions at z 4-7, are used to derive galaxy mass functions (MF) to masses M~10^8 at z 4-7. A bootstap approach is used to derive the MFs to account for the large scatter in the M--Luv relation and the luminosity function uncertainties, along with an analytical crosscheck. The MFs are also corrected for the effects of incompleteness. The incompleteness-corrected MFs are steeper than previously found, with slopes alpha_M-1.4 to -1.6 at low masses. These slopes are, however, still substantially flatter than the MFs obtained from recent hydrodynamical simulations. We use these MFs to estimate the stellar mass density (SMD) of the universe to a fixed M_{UV,AB}<-18 as a function of redshift and find a SMD growth propto(1+z)^{-3.4 +/-0.8} from z 7 to z 4. We also derive the SMD from the completeness-corrected MFs to a mass limit M~10^{8} Msun. Such completeness-corrected MFs and the derived SMDs will be particularly important for model comparisons as future MFs reach to lower masses.



rate research

Read More

For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determining the best fit model to galaxy images in the rest-frame 2100 AA with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} propto (1+z)^{-1.18pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).
148 - Anna Gallazzi 2009
Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light (M/L) ratios from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M/L values using either absorption-line data or broad band colors. The accuracy of M/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M/L accuracy clearly depends on the spectral S/N ratio, there is no significant gain in improving the S/N much above 50/pix and limiting uncertainties of 0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high Hdelta at fixed D4000), the M/L of which cannot be constrained any better than 0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.
Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z=0.2 to z=1. At low stellar mass, we find that halo mass scales as Mh M*^0.46 and that this scaling does not evolve significantly with redshift to z=1. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M*~27 at M*=4.5x10^10 Msun and Mh=1.2x10^12 Msun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the pivot stellar mass, M*piv, the pivot halo mass, Mhpiv, and the pivot ratio, (Mh/M*)piv. Thanks to a homogeneous analysis of a single data set, we report the first detection of mass downsizing trends for both Mhpiv and M*piv. The pivot stellar mass decreases from M*piv=5.75+-0.13x10^10 Msun at z=0.88 to M*piv=3.55+-0.17x10^10 Msun at z=0.37. Intriguingly, however, the corresponding evolution of Mhpiv leaves the pivot ratio constant with redshift at (Mh/M*)piv~27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh/M* and not simply Mh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and AGN feedback.
We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z~3. The MODS data reach J=24.2, H=23.1, K=23.1 (5sigma, Vega magnitude) over 103 arcmin^2 (wide) and J=25.1, H=23.7, K=24.1 over 28 arcmin^2 (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10^9-10^10 Msun) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift and the integrated stellar mass density becomes ~ 8-18% of the local value at z~2 and ~ 4-9% at z~3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from alpha ~- 1.3 at z~1 to alpha ~- 1.6 at z~3, and that the evolution of the number density of low-mass (10^9-10^10 Msun) galaxies is weaker than that of M* (~10^11 Msun) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1<~z<~3.
131 - Benedetta Vulcani 2010
We present the galaxy stellar mass function (MF) and its evolution in clusters from z~0.8 to the current epoch, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS) (0.04<z<0.07), and the ESO Distant Cluster Survey (EDisCS) (0.4<z <0.8). We investigate the total MF and find it evolves noticeably with redshift. The shape at M*>10^11 M does not evolve, but below M*~10^10.8 M the MF at high redshift is flat, while in the Local Universe it flattens out at lower masses. The population of M* = 10^10.2 - 10^10.8 M galaxies must have grown significantly between z=0.8 and z=0. We analyze the MF of different morphological types (ellipticals, S0s and late-types), and find that also each of them evolves with redshift. All types have proportionally more massive galaxies at high- than at low-z, and the strongest evolution occurs among S0 galaxies. Examining the morphology-mass relation (the way the proportion of galaxies of different morphological types changes with galaxy mass), we find it strongly depends on redshift. At both redshifts, ~40% of the stellar mass is in elliptical galaxies. Another ~43% of the mass is in S0 galaxies in local clusters, while it is in spirals in distant clusters. To explain the observed trends, we discuss the importance of those mechanisms that could shape the MF. We conclude that mass growth due to star formation plays a crucial role in driving the evolution. It has to be accompanied by infall of galaxies onto clusters, and the mass distribution of infalling galaxies might be different from that of cluster galaxies. However, comparing with high-z field samples, we do not find conclusive evidence for such an environmental mass segregation. Our results suggest that star formation and infall change directly the MF of late-type galaxies in clusters and, indirectly, that of early-type galaxies through subsequent morphological transformations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا