We present an empirical study of the intertwined behaviour of members in a financial market. Exploiting a database where the broker that initiates an order book event can be identified, we decompose the correlation and response functions into contributions coming from different market participants and study how their behaviour is interconnected. We find evidence that (1) brokers are very heterogeneous in liquidity provision -- some are consistently liquidity providers while others are consistently liquidity takers. (2) The behaviour of brokers is strongly conditioned on the actions of {it other} brokers. In contrast brokers are only weakly influenced by the impact of their own previous orders. (3) The total impact of market orders is the result of a subtle compensation between the same broker pushing the price in one direction and the liquidity provision of other brokers pushing it in the opposite direction. These results enforce the picture of market dynamics being the result of the competition between heterogeneous participants interacting to form a complicated market ecology.
We consider the problem of designing a derivatives exchange aiming at addressing clients needs in terms of listed options and providing suitable liquidity. We proceed into two steps. First we use a quantization method to select the options that should be displayed by the exchange. Then, using a principal-agent approach, we design a make take fees contract between the exchange and the market maker. The role of this contract is to provide incentives to the market maker so that he offers small spreads for the whole range of listed options, hence attracting transactions and meeting the commercial requirements of the exchange.
We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on Partition Decoupled Null Models, a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application we analyze a correlation matrix derived from four years of close prices of equities in the NYSE and NASDAQ. In this example we expose (1) a natural structure composed of two interacting partitions of the market that both agrees with and generalizes standard notions of scale (eg., sector and industry) and (2) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called sector rotation. Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. The equities market is a prototypical complex system and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.
We introduce a methodology to visualize the limit order book (LOB) using a particle physics lens. Open-source data-analysis tool ROOT, developed by CERN, is used to reconstruct and visualize futures markets. Message-based data is used, rather than snapshots, as it offers numerous visualization advantages. The visualization method can include multiple variables and markets simultaneously and is not necessarily time dependent. Stakeholders can use it to visualize high-velocity data to gain a better understanding of markets or effectively monitor markets. In addition, the method is easily adjustable to user specifications to examine various LOB research topics, thereby complementing existing methods.
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional potential $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.
We studied non-dynamical stochastic resonance for the number of trades in the stock market. The trade arrival rate presents a deterministic pattern that can be modeled by a cosine function perturbed by noise. Due to the nonlinear relationship between the rate and the observed number of trades, the noise can either enhance or suppress the detection of the deterministic pattern. By finding the parameters of our model with intra-day data, we describe the trading environment and illustrate the presence of SR in the trade arrival rate of stocks in the U.S. market.